## FANDOM

114 Pages

If m is a divisor of n then so is −m. The tables below only list positive divisors.

## Key to the tables Edit

• d(n) is the number of positive divisors of n, including 1 and n itself
• σ(n) is the sum of the positive divisors of n, including 1 and n itself
• s(n) is the sum of the proper divisors of n, which does not include n itself; that is, s(n) = σ(n) − n
• φ(n) is the number of the nonnegative integers < n that are relatively prime to n
• sopf(n) is the sum of the distinct primes dividing n
• sopfr(n) is the sum of primes dividing n, with repetition

(Ruth-Aaron pair has two definitions: sopf(n) = sopf(n+1) and sopfr(n) = sopfr(n+1))

• a perfect number equals the sum of its proper divisors; that is, s(n) = n
• a deficient number is greater than the sum of its proper divisors; that is, s(n) < n
• an abundant number is lesser than the sum of its proper divisors; that is, s(n) > n
• a prime number has only 1 and itself as divisors; that is, d(n) = 2. Prime numbers are always deficient as s(n) = 1
• a composite number has more than 2 divisors; that is, d(n) > 2
• a sublime number has a perfect number of divisors, that is d(n) = perfect number, and whose divisors add up to another perfect number, that is σ(n) = perfect number

## 1 to 100 Edit

n Divisors d(n) σ(n) s(n) sopf(n) sopfr(n) φ(n) n−φ(n) Notes
111100010deficient, square, perfect power, highly composite, highly abundant, squarefree, unit
21, 22312211deficient, highly composite, highly abundant, superior highly composite, squarefree, prime
31, 32413321deficient, highly abundant, squarefree, prime
41, 2, 43732422deficient, square, perfect power, highly composite, highly abundant, semiprime, composite
51, 52615541deficient, squarefree, prime
61, 2, 3, 641065524perfect, semiperfect, highly composite, highly abundant, superior highly composite, squarefree, semiprime, composite
71, 72817761deficient, squarefree, prime
81, 2, 4, 841372644deficient, perfect power, highly abundant, composite
91, 3, 931143663deficient, square, perfect power, semiprime, composite
X1, 2, 5, X41687746deficient, highly abundant, squarefree, semiprime, composite
E1, E2101EEX1deficient, squarefree, prime
101, 2, 3, 4, 6, 10624145748abundant, semiperfect, highly composite, highly abundant, superior highly composite, sublime, composite
111, 1121211111101deficient, squarefree, prime
121, 2, 7, 12420X9968deficient, squarefree, semiprime, composite
131, 3, 5, 1342098887deficient, squarefree, semiprime, composite
141, 2, 4, 8, 14527132888deficient, square, perfect power, highly abundant, composite
151, 1521611515141deficient, squarefree, prime
161, 2, 3, 6, 9, 166331958610abundant, semiperfect, highly abundant, composite
171, 1721811717161deficient, squarefree, prime
181, 2, 4, 5, X, 186361X79810abundant, semiperfect, highly abundant, primitive abundant, composite
191, 3, 7, 19428EXX109deficient, squarefree, semiprime, composite
1X1, 2, E, 1X430121111X10deficient, squarefree, semiprime, composite
1E1, 1E22011E1E1X1deficient, squarefree, prime
201, 2, 3, 4, 6, 8, 10, 208503059814abundant, semiperfect, highly composite, highly abundant, composite
n Divisors d(n) σ(n) s(n) sopf(n) sopfr(n) φ(n) n−φ(n) Notes
211, 5, 2132765X185deficient, square, perfect power, semiprime, composite
221, 2, 11, 224361413131012deficient, squarefree, semiprime, composite
231, 3, 9, 234341139169deficient, perfect power, composite
241, 2, 4, 7, 12, 24648249E1014perfect, semiperfect, composite
251, 2522612525241deficient, squarefree, prime
261, 2, 3, 5, 6, X, 13, 2686036XX81Xabundant, semiperfect, highly abundant, squarefree, sphenic, composite
271, 2722812727261deficient, squarefree, prime
281, 2, 4, 8, 14, 28653272X1414deficient, perfect power, composite
291, 3, E, 294401312121811deficient, squarefree, semiprime, composite
2X1, 2, 15, 2X4461817171416deficient, squarefree, semiprime, composite
2E1, 5, 7, 2E44011101020Edeficient, squarefree, semiprime, composite
301, 2, 3, 4, 6, 9, 10, 16, 30977475X1020abundant, square, perfect power, semiperfect, highly composite, highly abundant, composite
311, 3123213131301deficient, squarefree, prime
321, 2, 17, 324501X19191618deficient, squarefree, semiprime, composite
331, 3, 11, 334481514142013deficient, squarefree, semiprime, composite
341, 2, 4, 5, 8, X, 18, 34876427E1420abundant, semiperfect, composite
351, 3523613535341deficient, squarefree, prime
361, 2, 3, 6, 7, 12, 19, 368804610101026abundant, semiperfect, highly abundant, squarefree, sphenic, composite
371, 3723813737361deficient, squarefree, prime
381, 2, 4, E, 1X, 386703411131820deficient, composite
391, 3, 5, 9, 13, 39666298E2019deficient, composite
3X1, 2, 1E, 3X4602221211X20deficient, squarefree, semiprime, composite
3E1, 3E24013E3E3X1deficient, squarefree, prime
401, 2, 3, 4, 6, 8, 10, 14, 20, 40XX4645E1428abundant, semiperfect, highly composite, highly abundant, composite
n Divisors d(n) σ(n) s(n) sopf(n) sopfr(n) φ(n) n−φ(n) Notes
411, 7, 413498712367deficient, square, perfect power, semiprime, composite
421, 2, 5, X, 21, 42679377101826deficient, composite
431, 3, 15, 434601918182817deficient, squarefree, semiprime, composite
441, 2, 4, 11, 22, 446823X13152024deficient, composite
451, 4524614545441deficient, squarefree, prime
461, 2, 3, 6, 9, 16, 23, 468X0565E1630abundant, semiperfect, composite
471, 5, E, 474601514143413deficient, squarefree, semiprime, composite
481, 2, 4, 7, 8, 12, 24, 488X0549112028abundant, semiperfect, composite
491, 3, 17, 494681E1X1X3019deficient, squarefree, semiprime, composite
4X1, 2, 25, 4X4762827272426deficient, squarefree, semiprime, composite
4E1, 4E25014E4E4X1deficient, squarefree, prime
501, 2, 3, 4, 5, 6, X, 10, 13, 18, 26, 501012090X101438abundant, semiperfect, highly composite, highly abundant, superior highly composite, composite
511, 5125215151501deficient, squarefree, prime
521, 2, 27, 524802X29292628deficient, squarefree, semiprime, composite
531, 3, 7, 9, 19, 5368835X113023deficient, composite
541, 2, 4, 8, 14, 28, 547X7532102828deficient, square, perfect power, composite
551, 5, 11, 554701716164015deficient, squarefree, semiprime, composite
561, 2, 3, 6, E, 1X, 29, 568100661414183Xabundant, semiperfect, squarefree, sphenic, composite
571, 5725815757561deficient, squarefree, prime
581, 2, 4, 15, 2X, 586X64X17192830deficient, composite
591, 3, 1E, 594802322223821deficient, squarefree, semiprime, composite
5X1, 2, 5, 7, X, 12, 2E, 5X8100621212203Xabundant, weird, primitive abundant, squarefree, sphenic, composite
5E1, 5E26015E5E5X1deficient, squarefree, prime
601, 2, 3, 4, 6, 8, 9, 10, 16, 20, 30, 6010143X35102040abundant, semiperfect, highly abundant, composite
n Divisors d(n) σ(n) s(n) sopf(n) sopfr(n) φ(n) n−φ(n) Notes
611, 6126216161601deficient, squarefree, prime
621, 2, 31, 624963433333032deficient, squarefree, semiprime, composite
631, 3, 5, 13, 21, 636X441811342Edeficient, composite
641, 2, 4, 17, 32, 646E854191E3034deficient, composite
651, 7, E, 654801716165015deficient, squarefree, semiprime, composite
661, 2, 3, 6, 11, 22, 33, 6681207616162046abundant, semiperfect, squarefree, sphenic, composite
671, 6726816767661deficient, squarefree, prime
681, 2, 4, 5, 8, X, 14, 18, 34, 68X1368X7112840abundant, semiperfect, composite
691, 3, 9, 23, 695X1343104623deficient, square, perfect power, composite
6X1, 2, 35, 6X4X63837373436deficient, squarefree, semiprime, composite
6E1, 6E27016E6E6X1deficient, squarefree, prime
701, 2, 3, 4, 6, 7, 10, 12, 19, 24, 36, 7010168E810122050abundant, semiperfect, highly abundant, composite
711, 5, 15, 714901E1X1X5419deficient, squarefree, semiprime, composite
721, 2, 37, 724E03X39393638deficient, squarefree, semiprime, composite
731, 3, 25, 734X02928284827deficient, squarefree, semiprime, composite
741, 2, 4, 8, E, 1X, 38, 7481307811153440abundant, semiperfect, primitive abundant, composite
751, 7527617575741deficient, squarefree, prime
761, 2, 3, 5, 6, 9, X, 13, 16, 26, 39, 7610176100X112056abundant, semiperfect, highly abundant, composite
771, 7, 11, 774941918186017deficient, squarefree, semiprime, composite
781, 2, 4, 1E, 3X, 7861206421233840deficient, composite
791, 3, 27, 794X82E2X2X5029deficient, squarefree, semiprime, composite
7X1, 2, 3E, 7X41004241413X40deficient, squarefree, semiprime, composite
7E1, 5, 17, 7E4X0212020601Edeficient, squarefree, semiprime, composite
801, 2, 3, 4, 6, 8, 10, 14, 20, 28, 40, 80101901105112854abundant, semiperfect, highly abundant, composite
n Divisors d(n) σ(n) s(n) sopf(n) sopfr(n) φ(n) n−φ(n) Notes
811, 8128218181801deficient, squarefree, prime
821, 2, 7, 12, 41, 826123619143648deficient, composite
831, 3, 9, E, 29, 8361104912155033deficient, composite
841, 2, 4, 5, X, 18, 21, 42, 849161997123450abundant, square, perfect power, semiperfect, composite
851, 8528618585841deficient, squarefree, prime
861, 2, 3, 6, 15, 2X, 43, 868160961X1X285Xabundant, semiperfect, squarefree, sphenic, composite
871, 8728818787861deficient, squarefree, prime
881, 2, 4, 8, 11, 22, 44, 8881568X13174048abundant, semiperfect, primitive abundant, composite
891, 3, 5, 7, 13, 19, 2E, 8981407313134049deficient, squarefree, sphenic, composite
8X1, 2, 45, 8X41164847474446deficient, squarefree, semiprime, composite
8E1, 8E29018E8E8X1deficient, squarefree, prime
901, 2, 3, 4, 6, 9, 10, 16, 23, 30, 46, 90101E41245113060abundant, semiperfect, highly abundant, composite
911, 9129219191901deficient, squarefree, prime
921, 2, 5, X, E, 1X, 47, 9281608X1616345Xdeficient, squarefree, sphenic, composite
931, 3, 31, 9341083534346033deficient, squarefree, semiprime, composite
941, 2, 4, 7, 8, 12, 14, 24, 48, 94X188E49134054abundant, semiperfect, composite
951, 9529619595941deficient, squarefree, prime
961, 2, 3, 6, 17, 32, 49, 968180X620203066abundant, semiperfect, squarefree, sphenic, composite
971, 5, 1E, 9741002524247423deficient, squarefree, semiprime, composite
981, 2, 4, 25, 4X, 9861567X27294850deficient, composite
991, 3, 9, 11, 33, 9961325514176039deficient, composite
9X1, 2, 4E, 9X41305251514X50deficient, squarefree, semiprime, composite
9E1, 7, 15, 9E4100212020801Edeficient, squarefree, semiprime, composite
X01, 2, 3, 4, 5, 6, 8, X, 10, 13, 18, 20, 26, 34, 50, X014260180X122874abundant, semiperfect, highly composite, highly abundant, superior highly composite, composite
n Divisors d(n) σ(n) s(n) sopf(n) sopfr(n) φ(n) n−φ(n) Notes
X11, E, X13E110E1X92Edeficient, square, perfect power, semiprime, composite
X21, 2, 51, X241365453535052deficient, squarefree, semiprime, composite
X31, 3, 35, X341203938386837deficient, squarefree, semiprime, composite
X41, 2, 4, 27, 52, X4616884292E5054deficient, composite
X51, 5, 21, X54110275138421deficient, perfect power, composite
X61, 2, 3, 6, 7, 9, 12, 16, 19, 36, 53, X61022013610133076abundant, semiperfect, composite
X71, X72X81X7X7X61deficient, squarefree, prime
X81, 2, 4, 8, 14, 28, 54, X88193X72125454deficient, perfect power, composite
X91, 3, 37, X941283E3X3X7039deficient, squarefree, semiprime, composite
XX1, 2, 5, X, 11, 22, 55, XX8190X21818406Xdeficient, squarefree, sphenic, composite
XE1, XE2E01XEXEXX1deficient, squarefree, prime
E01, 2, 3, 4, 6, E, 10, 1X, 29, 38, 56, E01024015014163478abundant, semiperfect, composite
E11, 7, 17, E141142322229021deficient, squarefree, semiprime, composite
E21, 2, 57, E241505X59595658deficient, squarefree, semiprime, composite
E31, 3, 5, 9, 13, 23, 39, E38180898126053deficient, composite
E41, 2, 4, 8, 15, 2X, 58, E481X6E2171E5460deficient, composite
E51, E52E61E5E5E41deficient, squarefree, prime
E61, 2, 3, 6, 1E, 3X, 59, E682001062424387Xabundant, semiperfect, squarefree, sphenic, composite
E71, E72E81E7E7E61deficient, squarefree, prime
E81, 2, 4, 5, 7, X, 12, 18, 24, 2E, 5X, E81024014412144078abundant, semiperfect, composite
E91, 3, 3E, E941404342427841deficient, squarefree, semiprime, composite
EX1, 2, 5E, EX41606261615X60deficient, squarefree, semiprime, composite
EE1, E, 11, EE4120212020X01Edeficient, squarefree, semiprime, composite
1001, 2, 3, 4, 6, 8, 9, 10, 14, 16, 20, 30, 40, 60, 100132971975124080abundant, square, perfect power, semiperfect, highly abundant, composite

## 101 to 200 Edit

n Divisors d(n) σ(n) s(n) sopf(n) sopfr(n) φ(n) n−φ(n) Notes
1011, 5, 25, 10141302E2X2X9429deficient, squarefree, semiprime, composite
1021, 2, 61, 10241666463636062deficient, squarefree, semiprime, composite
1031, 3, 7, 19, 41, 103617069X157053deficient, composite
1041, 2, 4, 31, 62, 10461X29X33356064deficient, composite
1051, 105210611051051041deficient, squarefree, prime
1061, 2, 3, 5, 6, X, 13, 21, 26, 42, 63, 10610270166X133492abundant, semiperfect, composite
1071, 107210811071071061deficient, squarefree, prime
1081, 2, 4, 8, 17, 32, 64, 108821010419216068deficient, composite
1091, 3, 9, 15, 43, 109617669181E8049deficient, composite
10X1, 2, 7, E, 12, 1X, 65, 10X8200E21818507Xdeficient, squarefree, sphenic, composite
10E1, 5, 27, 10E4140313030X02Edeficient, squarefree, semiprime, composite
1101, 2, 3, 4, 6, 10, 11, 22, 33, 44, 66, 1101028817816184090abundant, semiperfect, composite
1111, 111211211111111101deficient, squarefree, prime
1121, 2, 67, 11241806X69696668deficient, squarefree, semiprime, composite
1131, 3, 45, 11341604948488847deficient, squarefree, semiprime, composite
1141, 2, 4, 5, 8, X, 14, 18, 28, 34, 68, 114102761627135480abundant, semiperfect, composite
1151, 7, 1E, 1154140272626E025deficient, squarefree, semiprime, composite
1161, 2, 3, 6, 9, 16, 23, 46, 69, 116X2631495124690abundant, semiperfect, composite
1171, 117211811171171161deficient, squarefree, prime
1181, 2, 4, 35, 6X, 1186206XX37396870deficient, composite
1191, 3, 5, E, 13, 29, 47, 1198200X317176871deficient, squarefree, sphenic, composite
11X1, 2, 6E, 11X41907271716X70deficient, squarefree, semiprime, composite
11E1, 11E2120111E11E11X1deficient, squarefree, prime
1201, 2, 3, 4, 6, 7, 8, 10, 12, 19, 20, 24, 36, 48, 70, 12014340220101440X0abundant, semiperfect, highly abundant, composite
n Divisors d(n) σ(n) s(n) sopf(n) sopfr(n) φ(n) n−φ(n) Notes
1211, 11, 121313312112211011deficient, square, perfect power, semiprime, composite
1221, 2, 5, X, 15, 2X, 71, 122823010X2020548Xdeficient, squarefree, sphenic, composite
1231, 3, 9, 17, 49, 1236198751X219053deficient, composite
1241, 2, 4, 37, 72, 1246218E4393E7074deficient, composite
1251, 125212611251251241deficient, squarefree, prime
1261, 2, 3, 6, 25, 4X, 73, 12682601362X2X489Xabundant, semiperfect, squarefree, sphenic, composite
1271, 5, 7, 21, 2E, 1276188611015X047deficient, composite
1281, 2, 4, 8, E, 14, 1X, 38, 74, 128X27014411176880abundant, semiperfect, composite
1291, 3, 4E, 12941805352529851deficient, squarefree, semiprime, composite
12X1, 2, 75, 12X41X67877777476deficient, squarefree, semiprime, composite
12E1, 12E2130112E12E12X1deficient, squarefree, prime
1301, 2, 3, 4, 5, 6, 9, X, 10, 13, 16, 18, 26, 30, 39, 50, 76, 13016396266X1340E0abundant, semiperfect, highly composite, highly abundant, composite
1311, 131213211311311301deficient, squarefree, prime
1321, 2, 7, 11, 12, 22, 77, 132824010X1X1X6092deficient, squarefree, sphenic, composite
1331, 3, 51, 1334188555454X053deficient, squarefree, semiprime, composite
1341, 2, 4, 8, 1E, 3X, 78, 134826012821257480deficient, composite
1351, 5, 31, 135417037363610035deficient, squarefree, semiprime, composite
1361, 2, 3, 6, 27, 52, 79, 1368280146303050X6abundant, semiperfect, squarefree, sphenic, composite
1371, E, 15, 137416025242411423deficient, squarefree, semiprime, composite
1381, 2, 4, 3E, 7X, 138624010441437880deficient, composite
1391, 3, 7, 9, 19, 23, 53, 1398228XEX149069deficient, composite
13X1, 2, 5, X, 17, 32, 7E, 13X82601222222609Xdeficient, squarefree, sphenic, composite
13E1, 13E2140113E13E13X1deficient, squarefree, prime
1401, 2, 3, 4, 6, 8, 10, 14, 20, 28, 40, 54, 80, 1401236422451354X8abundant, semiperfect, composite
n Divisors d(n) σ(n) s(n) sopf(n) sopfr(n) φ(n) n−φ(n) Notes
1411, 141214211411411401deficient, squarefree, prime
1421, 2, 81, 14242068483838082deficient, squarefree, semiprime, composite
1431, 3, 5, 11, 13, 33, 55, 1438240E919198083deficient, squarefree, sphenic, composite
1441, 2, 4, 7, 12, 24, 41, 82, 144929314E9167094abundant, square, perfect power, semiperfect, composite
1451, 145214611451451441deficient, squarefree, prime
1461, 2, 3, 6, 9, E, 16, 1X, 29, 56, 83, 146103301X6141750E6abundant, semiperfect, composite
1471, 147214811471471461deficient, squarefree, prime
1481, 2, 4, 5, 8, X, 18, 21, 34, 42, 84, 148103291X171468X0abundant, semiperfect, composite
1491, 3, 57, 14941X85E5X5XE059deficient, squarefree, semiprime, composite
14X1, 2, 85, 14X42168887878486deficient, squarefree, semiprime, composite
14E1, 7, 25, 14E41803130301202Edeficient, squarefree, semiprime, composite
1501, 2, 3, 4, 6, 10, 15, 2X, 43, 58, 86, 150103602101X2054E8abundant, semiperfect, composite
1511, 5, 35, 15141903E3X3X11439deficient, squarefree, semiprime, composite
1521, 2, 87, 15242208X89898688deficient, squarefree, semiprime, composite
1531, 3, 9, 1E, 59, 1536220892225E063deficient, composite
1541, 2, 4, 8, 11, 14, 22, 44, 88, 154X30216X13198094abundant, semiperfect, composite
1551, E, 17, 155418027262613025deficient, squarefree, semiprime, composite
1561, 2, 3, 5, 6, 7, X, 12, 13, 19, 26, 2E, 36, 5X, 89, 15614400266151540116abundant, semiperfect, highly abundant, squarefree, composite
1571, 157215811571571561deficient, squarefree, prime
1581, 2, 4, 45, 8X, 158627611X47498890deficient, composite
1591, 3, 5E, 1594200636262E861deficient, squarefree, semiprime, composite
15X1, 2, 8E, 15X42309291918X90deficient, squarefree, semiprime, composite
15E1, 5, 37, 15E41X04140401203Edeficient, squarefree, semiprime, composite
1601, 2, 3, 4, 6, 8, 9, 10, 16, 20, 23, 30, 46, 60, 90, 1601442028051360100abundant, perfect power, semiperfect, highly abundant, composite
n Divisors d(n) σ(n) s(n) sopf(n) sopfr(n) φ(n) n−φ(n) Notes
1611, 7, 27, 161419433323213031deficient, squarefree, semiprime, composite
1621, 2, 91, 16242369493939092deficient, squarefree, semiprime, composite
1631, 3, 61, 163420865646410063deficient, squarefree, semiprime, composite
1641, 2, 4, 5, X, E, 18, 1X, 38, 47, 92, 164103601E8161868E8abundant, semiperfect, composite
1651, 11, 15, 165419027262614025deficient, squarefree, semiprime, composite
1661, 2, 3, 6, 31, 62, 93, 1668320176363660106abundant, semiperfect, squarefree, sphenic, composite
1671, 167216811671671661deficient, squarefree, prime
1681, 2, 4, 7, 8, 12, 14, 24, 28, 48, 94, 168103601E491580X8abundant, semiperfect, composite
1691, 3, 5, 9, 13, 21, 39, 63, 169929712X814X089deficient, square, perfect power, composite
16X1, 2, 95, 16X42469897979496deficient, squarefree, semiprime, composite
16E1, 16E2170116E16E16X1deficient, squarefree, prime
1701, 2, 3, 4, 6, 10, 17, 32, 49, 64, 96, 170103X8238202260110abundant, semiperfect, composite
1711, 171217211711711701deficient, squarefree, prime
1721, 2, 5, X, 1E, 3X, 97, 172830014X262674EXdeficient, squarefree, sphenic, composite
1731, 3, 7, E, 19, 29, 65, 17382801091919X093deficient, squarefree, sphenic, composite
1741, 2, 4, 8, 25, 4X, 98, 1748316162272E94X0deficient, composite
1751, 175217611751751741deficient, squarefree, prime
1761, 2, 3, 6, 9, 11, 16, 22, 33, 66, 99, 17610396220161960116abundant, semiperfect, composite
1771, 5, 3E, 177420045444413443deficient, squarefree, semiprime, composite
1781, 2, 4, 4E, 9X, 17862E0134515398X0deficient, composite
1791, 3, 67, 17942286E6X6X11069deficient, squarefree, semiprime, composite
17X1, 2, 7, 12, 15, 2X, 9E, 17X8300142222280EXdeficient, squarefree, sphenic, composite
17E1, 17E2180117E17E17X1deficient, squarefree, prime
1801, 2, 3, 4, 5, 6, 8, X, 10, 13, 14, 18, 20, 26, 34, 40, 50, 68, X0, 18018520360X1454128abundant, semiperfect, highly composite, highly abundant, composite
n Divisors d(n) σ(n) s(n) sopf(n) sopfr(n) φ(n) n−φ(n) Notes
1811, 181218211811811801deficient, squarefree, prime
1821, 2, E, 1X, X1, 1826293111112092E0deficient, composite
1831, 3, 9, 23, 69, 1836264X131311669deficient, perfect power, composite
1841, 2, 4, 51, X2, 184630213X5355X0X4deficient, composite
1851, 5, 7, 2E, 41, 185624681101712065deficient, composite
1861, 2, 3, 6, 35, 6X, X3, 18683601963X3X6811Xabundant, semiperfect, squarefree, sphenic, composite
1871, 11, 17, 18741E429282816027deficient, squarefree, semiprime, composite
1881, 2, 4, 8, 27, 52, X4, 18883401742931X0X8deficient, composite
1891, 3, 6E, 189424073727211871deficient, squarefree, semiprime, composite
18X1, 2, 5, X, 21, 42, X5, 18X833016271584106deficient, composite
18E1, 18E2190118E18E18X1deficient, squarefree, prime
1901, 2, 3, 4, 6, 7, 9, 10, 12, 16, 19, 24, 30, 36, 53, 70, X6, 19016508338101560130abundant, semiperfect, composite
1911, E, 1E, 19142002E2X2X16429deficient, squarefree, semiprime, composite
1921, 2, X7, 1924280XXX9X9X6X8deficient, squarefree, semiprime, composite
1931, 3, 5, 13, 15, 43, 71, 19383001292121X8X7deficient, squarefree, sphenic, composite
1941, 2, 4, 8, 14, 28, 54, X8, 1949367193214X8X8deficient, square, perfect power, composite
1951, 195219611951951941deficient, squarefree, prime
1961, 2, 3, 6, 37, 72, X9, 19683801X6404070126abundant, semiperfect, squarefree, sphenic, composite
1971, 7, 31, 197421439383816037deficient, squarefree, semiprime, composite
1981, 2, 4, 5, X, 11, 18, 22, 44, 55, XX, 19810410234181X80118abundant, semiperfect, composite
1991, 3, 9, 25, 73, 1996286X9282E12079deficient, composite
19X1, 2, XE, 19X4290E2E1E1XXE0deficient, squarefree, semiprime, composite
19E1, 19E21X0119E19E19X1deficient, squarefree, prime
1X01, 2, 3, 4, 6, 8, E, 10, 1X, 20, 29, 38, 56, 74, E0, 1X014500320141868134abundant, semiperfect, composite
n Divisors d(n) σ(n) s(n) sopf(n) sopfr(n) φ(n) n−φ(n) Notes
1X11, 5, 45, 1X142304E4X4X15449deficient, squarefree, semiprime, composite
1X21, 2, 7, 12, 17, 32, E1, 1X2834015X242490112deficient, squarefree, sphenic, composite
1X31, 3, 75, 1X3426079787812877deficient, squarefree, semiprime, composite
1X41, 2, 4, 57, E2, 1X46338154595EE0E4deficient, composite
1X51, 1X521X611X51X51X41deficient, squarefree, prime
1X61, 2, 3, 5, 6, 9, X, 13, 16, 23, 26, 39, 46, 76, E3, 1X614500316X1460146abundant, semiperfect, composite
1X71, 1X721X811X71X71X61deficient, squarefree, prime
1X81, 2, 4, 8, 14, 15, 2X, 58, E4, 1X8X3X61EX1721X8100abundant, semiperfect, primitive abundant, composite
1X91, 3, 7, 11, 19, 33, 77, 1X983141271E1E100X9deficient, squarefree, sphenic, composite
1XX1, 2, E5, 1XX42X6E8E7E7E4E6deficient, squarefree, semiprime, composite
1XE1, 5, E, 21, 47, 1XE627081141914863deficient, composite
1E01, 2, 3, 4, 6, 10, 1E, 3X, 59, 78, E6, 1E010480290242674138abundant, semiperfect, composite
1E11, 1E121E211E11E11E01deficient, squarefree, prime
1E21, 2, E7, 1E242E0EXE9E9E6E8deficient, squarefree, semiprime, composite
1E31, 3, 9, 27, 79, 1E362X8E52X3113083deficient, composite
1E41, 2, 4, 5, 7, 8, X, 12, 18, 24, 2E, 34, 48, 5X, E8, 1E414500308121680134abundant, semiperfect, composite
1E51, 1E521E611E51E51E41deficient, squarefree, prime
1E61, 2, 3, 6, 3E, 7X, E9, 1E6840020644447813Xabundant, semiperfect, squarefree, sphenic, composite
1E71, 1E721E811E71E71E61deficient, squarefree, prime
1E81, 2, 4, 5E, EX, 1E863601646163E8100deficient, composite
1E91, 3, 5, 13, 17, 49, 7E, 1E983401432323100E9deficient, squarefree, sphenic, composite
1EX1, 2, E, 11, 1X, 22, EE, 1EX83601622222X011Xdeficient, squarefree, sphenic, composite
1EE1, 7, 35, 1EE42404140401803Edeficient, squarefree, semiprime, composite
2001, 2, 3, 4, 6, 8, 9, 10, 14, 16, 20, 28, 30, 40, 60, 80, 100, 2001658338351480140abundant, semiperfect, highly abundant, composite

## 201 to 300 Edit

n Divisors d(n) σ(n) s(n) sopf(n) sopfr(n) φ(n) n−φ(n) Notes
2011, 15, 201321716152X1X815deficient, square, perfect power, semiprime, composite
2021, 2, 5, X, 25, 4X, 101, 202839018X30309412Xdeficient, squarefree, sphenic, composite
2031, 3, 81, 203428885848414083deficient, squarefree, semiprime, composite
2041, 2, 4, 61, 102, 204637216X6365100104deficient, composite
2051, 205220612052052041deficient, squarefree, prime
2061, 2, 3, 6, 7, 12, 19, 36, 41, 82, 103, 20610490286101770156abundant, semiperfect, composite
2071, 5, 4E, 207426055545417453deficient, squarefree, semiprime, composite
2081, 2, 4, 8, 31, 62, 104, 20883E61XX3337100108deficient, composite
2091, 3, 9, E, 23, 29, 83, 2098340133121813099deficient, composite
20X1, 2, 105, 20X4316108107107104106deficient, squarefree, semiprime, composite
20E1, 11, 1E, 20E42403130301X02Edeficient, squarefree, semiprime, composite
2101, 2, 3, 4, 5, 6, X, 10, 13, 18, 21, 26, 42, 50, 63, 84, 106, 210166043E4X1568164abundant, semiperfect, highly abundant, composite
2111, 7, 37, 211425443424219041deficient, squarefree, semiprime, composite
2121, 2, 107, 212432010X109109106108deficient, squarefree, semiprime, composite
2131, 3, 85, 21342X089888814887deficient, squarefree, semiprime, composite
2141, 2, 4, 8, 14, 17, 32, 64, 108, 214X4382241923100114abundant, semiperfect, primitive abundant, composite
2151, 5, 51, 215427057565618055deficient, squarefree, semiprime, composite
2161, 2, 3, 6, 9, 15, 16, 2X, 43, 86, 109, 216104X62901X2180156abundant, semiperfect, composite
2171, 217221812172172161deficient, squarefree, prime
2181, 2, 4, 7, E, 12, 1X, 24, 38, 65, 10X, 21810480264181XX0138abundant, semiperfect, composite
2191, 3, 87, 21942X88E8X8X15089deficient, squarefree, semiprime, composite
21X1, 2, 5, X, 27, 52, 10E, 21X84001X23232X013Xdeficient, squarefree, sphenic, composite
21E1, 21E2220121E21E21X1deficient, squarefree, prime
2201, 2, 3, 4, 6, 8, 10, 11, 20, 22, 33, 44, 66, 88, 110, 220145X0380161X80160abundant, semiperfect, composite
n Divisors d(n) σ(n) s(n) sopf(n) sopfr(n) φ(n) n−φ(n) Notes
2211, 221222212212212201deficient, squarefree, prime
2221, 2, 111, 2224336114113113110112deficient, squarefree, semiprime, composite
2231, 3, 5, 7, 9, 13, 19, 2E, 39, 53, 89, 223104402191316100123deficient, composite
2241, 2, 4, 67, 112, 22463X8184696E110114deficient, composite
2251, 225222612252252241deficient, squarefree, prime
2261, 2, 3, 6, 45, 8X, 113, 22684602364X4X8815Xabundant, semiperfect, squarefree, sphenic, composite
2271, E, 25, 22742603534341E433deficient, squarefree, semiprime, composite
2281, 2, 4, 5, 8, X, 14, 18, 28, 34, 54, 68, 114, 2281253630X715X8140abundant, semiperfect, composite
2291, 3, 8E, 229430093929215891deficient, squarefree, semiprime, composite
22X1, 2, 7, 12, 1E, 3X, 115, 22X84001922828E013Xdeficient, squarefree, sphenic, composite
22E1, 15, 17, 22E42603130302002Edeficient, squarefree, semiprime, composite
2301, 2, 3, 4, 6, 9, 10, 16, 23, 30, 46, 69, 90, 116, 230135X737751490160abundant, square, perfect power, semiperfect, composite
2311, 5, 11, 21, 55, 231630291161E18071deficient, composite
2321, 2, 117, 232435011X119119116118deficient, squarefree, semiprime, composite
2331, 3, 91, 233430895949416093deficient, squarefree, semiprime, composite
2341, 2, 4, 8, 35, 6X, 118, 2348446212373E114120deficient, composite
2351, 7, 3E, 23542804746461E045deficient, squarefree, semiprime, composite
2361, 2, 3, 5, 6, X, E, 13, 1X, 26, 29, 47, 56, 92, 119, 2361460038619196818Xabundant, semiperfect, squarefree, composite
2371, 237223812372372361deficient, squarefree, prime
2381, 2, 4, 6E, 11X, 23864101947173118120deficient, composite
2391, 3, 9, 31, 93, 2396352115343716099deficient, composite
23X1, 2, 11E, 23X436012212112111X120deficient, squarefree, semiprime, composite
23E1, 5, 57, 23E42X06160601X05Edeficient, squarefree, semiprime, composite
2401, 2, 3, 4, 6, 7, 8, 10, 12, 14, 19, 20, 24, 36, 40, 48, 70, 94, 120, 240186X8468101680180abundant, semiperfect, highly abundant, composite
n Divisors d(n) σ(n) s(n) sopf(n) sopfr(n) φ(n) n−φ(n) Notes
2411, 241224212412412401deficient, squarefree, prime
2421, 2, 11, 22, 121, 24263991571324110132deficient, composite
2431, 3, 95, 243432099989816897deficient, squarefree, semiprime, composite
2441, 2, 4, 5, X, 15, 18, 2X, 58, 71, 122, 244105302X82022X8158abundant, semiperfect, composite
2451, E, 27, 245428037363621035deficient, squarefree, semiprime, composite
2461, 2, 3, 6, 9, 16, 17, 32, 49, 96, 123, 24610550306202390176abundant, semiperfect, composite
2471, 7, 41, 24742944971920641deficient, perfect power, composite
2481, 2, 4, 8, 37, 72, 124, 24884702243941120128deficient, composite
2491, 3, 5, 13, 1E, 59, 97, 24984001732727128121deficient, squarefree, sphenic, composite
24X1, 2, 125, 24X4376128127127124126deficient, squarefree, semiprime, composite
24E1, 24E2250124E24E24X1deficient, squarefree, prime
2501, 2, 3, 4, 6, 10, 25, 4X, 73, 98, 126, 250105X03502X3094178abundant, semiperfect, composite
2511, 251225212512512501deficient, squarefree, prime
2521, 2, 5, 7, X, 12, 21, 2E, 42, 5X, 127, 2521052028X1217X0172abundant, semiperfect, composite
2531, 3, 9, 11, 23, 33, 99, 25383X8155141X160E3deficient, composite
2541, 2, 4, 8, E, 14, 1X, 28, 38, 74, 128, 254105302981119114140abundant, semiperfect, composite
2551, 255225612552552541deficient, squarefree, prime
2561, 2, 3, 6, 4E, 9X, 129, 256850026654549817Xabundant, semiperfect, squarefree, sphenic, composite
2571, 5, 5E, 25743006564641E463deficient, squarefree, semiprime, composite
2581, 2, 4, 75, 12X, 25864461XX7779128130deficient, composite
2591, 3, 7, 15, 19, 43, 9E, 25984001632323140119deficient, squarefree, sphenic, composite
25X1, 2, 12E, 25X439013213113112X130deficient, squarefree, semiprime, composite
25E1, 25E2260125E25E25X1deficient, squarefree, prime
2601, 2, 3, 4, 5, 6, 8, 9, X, 10, 13, 16, 18, 20, 26, 30, 34, 39, 50, 60, 76, X0, 130, 26020816576X15801X0abundant, semiperfect, highly composite, highly abundant, superior highly composite, composite
n Divisors d(n) σ(n) s(n) sopf(n) sopfr(n) φ(n) n−φ(n) Notes
2611, 17, 261327918173224617deficient, square, perfect power, semiprime, composite
2621, 2, 131, 2624396134133133130132deficient, squarefree, semiprime, composite
2631, 3, E, 29, X1, 26363841211221164EEdeficient, composite
2641, 2, 4, 7, 11, 12, 22, 24, 44, 77, 132, 264105542E01X20100164abundant, semiperfect, composite
2651, 5, 61, 265431067666620065deficient, squarefree, semiprime, composite
2661, 2, 3, 6, 51, X2, 133, 26685202765656X0186abundant, semiperfect, squarefree, sphenic, composite
2671, 267226812672672661deficient, squarefree, prime
2681, 2, 4, 8, 14, 1E, 3X, 78, 134, 268X5202742127128140abundant, semiperfect, primitive abundant, composite
2691, 3, 9, 35, X3, 2696396129383E180X9deficient, composite
26X1, 2, 5, X, 31, 62, 135, 26X8490222383810016Xdeficient, squarefree, sphenic, composite
26E1, 7, 45, 26E43005150502204Edeficient, squarefree, semiprime, composite
2701, 2, 3, 4, 6, 10, 27, 52, 79, X4, 136, 270106283783032X0190abundant, semiperfect, composite
2711, 271227212712712701deficient, squarefree, prime
2721, 2, E, 15, 1X, 2X, 137, 27284601XX262611415Xdeficient, squarefree, sphenic, composite
2731, 3, 5, 13, 21, 63, X5, 2738440189816148127deficient, composite
2741, 2, 4, 8, 3E, 7X, 138, 27485002484145134140deficient, composite
2751, 11, 25, 27542E037363624035deficient, squarefree, semiprime, composite
2761, 2, 3, 6, 7, 9, 12, 16, 19, 23, 36, 46, 53, X6, 139, 276146804061016901X6abundant, semiperfect, composite
2771, 277227812772772761deficient, squarefree, prime
2781, 2, 4, 5, X, 17, 18, 32, 64, 7E, 13X, 278105X03242224100178abundant, semiperfect, composite
2791, 3, X7, 2794368XEXXXX190X9deficient, squarefree, semiprime, composite
27X1, 2, 13E, 27X440014214114113X140deficient, squarefree, semiprime, composite
27E1, 27E2280127E27E27X1deficient, squarefree, prime
2801, 2, 3, 4, 6, 8, 10, 14, 20, 28, 40, 54, 80, X8, 140, 28014710450515X8194abundant, semiperfect, composite
n Divisors d(n) σ(n) s(n) sopf(n) sopfr(n) φ(n) n−φ(n) Notes
2811, 5, 7, E, 2E, 47, 65, 281840013E1E1E180101deficient, squarefree, sphenic, composite
2821, 2, 141, 2824406144143143140142deficient, squarefree, semiprime, composite
2831, 3, 9, 37, X9, 28363E81353X41190E3deficient, composite
2841, 2, 4, 81, 142, 284649220X8385140144deficient, composite
2851, 285228612852852841deficient, squarefree, prime
2861, 2, 3, 5, 6, X, 11, 13, 22, 26, 33, 55, 66, XX, 143, 286147004361E1E80206abundant, semiperfect, squarefree, composite
2871, 15, 1E, 287430035343425433deficient, squarefree, semiprime, composite
2881, 2, 4, 7, 8, 12, 24, 41, 48, 82, 144, 288105E3327918120168abundant, semiperfect, composite
2891, 3, XE, 2894380E3E2E2198E1deficient, squarefree, semiprime, composite
28X1, 2, 145, 28X4416148147147144146deficient, squarefree, semiprime, composite
28E1, 5, 67, 28E43407170702206Edeficient, squarefree, semiprime, composite
2901, 2, 3, 4, 6, 9, E, 10, 16, 1X, 29, 30, 38, 56, 83, E0, 146, 290167704X01419X01E0abundant, semiperfect, composite
2911, 291229212912912901deficient, squarefree, prime
2921, 2, 147, 292442014X149149146148deficient, squarefree, semiprime, composite
2931, 3, 7, 17, 19, 49, E1, 29384541812525160133deficient, squarefree, sphenic, composite
2941, 2, 4, 5, 8, X, 14, 18, 21, 34, 42, 68, 84, 148, 294136813X9716114180abundant, square, perfect power, semiperfect, composite
2951, 295229612952952941deficient, squarefree, prime
2961, 2, 3, 6, 57, E2, 149, 29685802X66060E01X6abundant, semiperfect, squarefree, sphenic, composite
2971, 11, 27, 297431439383826037deficient, squarefree, semiprime, composite
2981, 2, 4, 85, 14X, 29864E621X8789148150deficient, composite
2991, 3, 5, 9, 13, 23, 39, 69, E3, 299X506229815160139deficient, composite
29X1, 2, 7, 12, 25, 4X, 14E, 29X8500222323212017Xdeficient, squarefree, sphenic, composite
29E1, E, 31, 29E43204140402603Edeficient, squarefree, semiprime, composite
2X01, 2, 3, 4, 6, 8, 10, 15, 20, 2X, 43, 58, 86, E4, 150, 2X0147604801X22X81E4abundant, semiperfect, composite
n Divisors d(n) σ(n) s(n) sopf(n) sopfr(n) φ(n) n−φ(n) Notes
2X11, 2X122X212X12X12X01deficient, squarefree, prime
2X21, 2, 5, X, 35, 6X, 151, 2X2853024X404011418Xdeficient, squarefree, sphenic, composite
2X31, 3, E5, 2X343X0E9E8E81X8E7deficient, squarefree, semiprime, composite
2X41, 2, 4, 87, 152, 2X46508224898E150154deficient, composite
2X51, 7, 4E, 2X5434057565625055deficient, squarefree, semiprime, composite
2X61, 2, 3, 6, 9, 16, 1E, 3X, 59, E6, 153, 2X6106603762427E01E6abundant, semiperfect, composite
2X71, 5, 6E, 2X7436075747423473deficient, squarefree, semiprime, composite
2X81, 2, 4, 8, 11, 14, 22, 28, 44, 88, 154, 2X81061632X131E140168abundant, semiperfect, composite
2X91, 3, E7, 2X943X8EEEXEX1E0E9deficient, squarefree, semiprime, composite
2XX1, 2, E, 17, 1X, 32, 155, 2XX8500212282813017Xdeficient, squarefree, sphenic, composite
2XE1, 2XE22E012XE2XE2XX1deficient, squarefree, prime
2E01, 2, 3, 4, 5, 6, 7, X, 10, 12, 13, 18, 19, 24, 26, 2E, 36, 50, 5X, 70, 89, E8, 156, 2E020940650151780230abundant, semiperfect, highly abundant, composite
2E11, 2E122E212E12E12E01deficient, squarefree, prime
2E21, 2, 157, 2E2445015X159159156158deficient, squarefree, semiprime, composite
2E31, 3, 9, 3E, E9, 2E3644014942451E0103deficient, composite
2E41, 2, 4, 8, 45, 8X, 158, 2E48576282474E154160deficient, composite
2E51, 5, 15, 21, 71, 2E563X6E11X2322889deficient, composite
2E61, 2, 3, 6, 5E, EX, 159, 2E686003066464E81EXabundant, semiperfect, squarefree, sphenic, composite
2E71, 7, 51, 2E7435459585826057deficient, squarefree, semiprime, composite
2E81, 2, 4, 8E, 15X, 2E865302349193158160deficient, composite
2E91, 3, E, 11, 29, 33, EE, 2E984801832323180139deficient, squarefree, sphenic, composite
2EX1, 2, 5, X, 37, 72, 15E, 2EX8560262424212019Xdeficient, squarefree, sphenic, composite
2EE1, 2EE230012EE2EE2EX1deficient, squarefree, prime
3001, 2, 3, 4, 6, 8, 9, 10, 14, 16, 20, 23, 30, 40, 46, 60, 90, 100, 160, 30018874574515100200abundant, semiperfect, composite

## 301 to 400 Edit

n Divisors d(n) σ(n) s(n) sopf(n) sopfr(n) φ(n) n−φ(n) Notes
3011, 301230213013013001deficient, squarefree, prime
3021, 2, 7, 12, 27, 52, 161, 302854023X3434130192deficient, squarefree, sphenic, composite
3031, 3, 5, 13, 25, 73, 101, 30385001E93131168157deficient, squarefree, sphenic, composite
3041, 2, 4, 91, 162, 304654223X9395160164deficient, composite
3051, 17, 1E, 305434037363629035deficient, squarefree, semiprime, composite
3061, 2, 3, 6, 61, 102, 163, 30686203166666100206abundant, semiperfect, squarefree, sphenic, composite
3071, 307230813073073061deficient, squarefree, prime
3081, 2, 4, 5, 8, X, E, 18, 1X, 34, 38, 47, 74, 92, 164, 30814760454161X1141E4abundant, semiperfect, composite
3091, 3, 7, 9, 19, 41, 53, 103, 3099519210X18190139deficient, square, perfect power, composite
30X1, 2, 11, 15, 22, 2X, 165, 30X8530222282814018Xdeficient, squarefree, sphenic, composite
30E1, 30E2310130E30E30X1deficient, squarefree, prime
3101, 2, 3, 4, 6, 10, 31, 62, 93, 104, 166, 310107484383638100210abundant, semiperfect, composite
3111, 5, 75, 31143907E7X7X25479deficient, squarefree, semiprime, composite
3121, 2, 167, 312448016X169169166168deficient, squarefree, semiprime, composite
3131, 3, 105, 3134420109108108208107deficient, squarefree, semiprime, composite
3141, 2, 4, 7, 8, 12, 14, 24, 28, 48, 54, 94, 168, 314127083E4917140194abundant, semiperfect, composite
3151, 315231613153153141deficient, squarefree, prime
3161, 2, 3, 5, 6, 9, X, 13, 16, 21, 26, 39, 42, 63, 76, 106, 169, 31616849533X16X0236abundant, semiperfect, composite
3171, E, 35, 317436045444429443deficient, squarefree, semiprime, composite
3181, 2, 4, 95, 16X, 318656624X9799168170deficient, composite
3191, 3, 107, 319442810E10X10X210109deficient, squarefree, semiprime, composite
31X1, 2, 16E, 31X449017217117116X170deficient, squarefree, semiprime, composite
31E1, 5, 7, 11, 2E, 55, 77, 31E8480161212120011Edeficient, squarefree, sphenic, composite
3201, 2, 3, 4, 6, 8, 10, 17, 20, 32, 49, 64, 96, 108, 170, 320148405202024100220abundant, semiperfect, composite
n Divisors d(n) σ(n) s(n) sopf(n) sopfr(n) φ(n) n−φ(n) Notes
3211, 321232213213213201deficient, squarefree, prime
3221, 2, 171, 3224496174173173170172deficient, squarefree, semiprime, composite
3231, 3, 9, 15, 23, 43, 109, 32385001991822200123deficient, composite
3241, 2, 4, 5, X, 18, 1E, 3X, 78, 97, 172, 3241070039826281281E8abundant, semiperfect, composite
3251, 325232613253253241deficient, squarefree, prime
3261, 2, 3, 6, 7, E, 12, 19, 1X, 29, 36, 56, 65, 10X, 173, 326148004961E1EX0246abundant, semiperfect, squarefree, composite
3271, 327232813273273261deficient, squarefree, prime
3281, 2, 4, 8, 14, 25, 4X, 98, 174, 328X65632X2731168180abundant, semiperfect, primitive abundant, composite
3291, 3, 5, 13, 27, 79, 10E, 32985402133333180169deficient, squarefree, sphenic, composite
32X1, 2, 175, 32X44X6178177177174176deficient, squarefree, semiprime, composite
32E1, 32E2330132E32E32X1deficient, squarefree, prime
3301, 2, 3, 4, 6, 9, 10, 11, 16, 22, 30, 33, 44, 66, 99, 110, 176, 330168X2572161E100230abundant, semiperfect, composite
3311, 7, 57, 331439463626229061deficient, squarefree, semiprime, composite
3321, 2, 5, X, 3E, 7X, 177, 332860028X46461341EXdeficient, squarefree, sphenic, composite
3331, 3, 111, 3334448115114114220113deficient, squarefree, semiprime, composite
3341, 2, 4, 8, 4E, 9X, 178, 33486302E85155174180deficient, composite
3351, E, 37, 33543804746462E045deficient, squarefree, semiprime, composite
3361, 2, 3, 6, 67, 112, 179, 33686803467070110226abundant, semiperfect, squarefree, sphenic, composite
3371, 5, 17, 21, 7E, 3376438101202526097deficient, composite
3381, 2, 4, 7, 12, 15, 24, 2X, 58, 9E, 17X, 3381070038422241401E8abundant, semiperfect, composite
3391, 3, 9, 45, 113, 33964X6169484E220119deficient, composite
33X1, 2, 17E, 33X450018218118117X180deficient, squarefree, semiprime, composite
33E1, 33E2340133E33E33X1deficient, squarefree, prime
3401, 2, 3, 4, 5, 6, 8, X, 10, 13, 14, 18, 20, 26, 28, 34, 40, 50, 68, 80, X0, 114, 180, 34020X60720X16X8254abundant, semiperfect, highly abundant, composite
n Divisors d(n) σ(n) s(n) sopf(n) sopfr(n) φ(n) n−φ(n) Notes
3411, 11, 31, 341438443424230041deficient, squarefree, semiprime, composite
3421, 2, 181, 3424506184183183180182deficient, squarefree, semiprime, composite
3431, 3, 7, 19, 1E, 59, 115, 34385401E929291X0163deficient, squarefree, sphenic, composite
3441, 2, 4, E, 1X, 38, X1, 182, 344965731311221641X0deficient, square, perfect power, composite
3451, 5, 81, 345441087868628085deficient, squarefree, semiprime, composite
3461, 2, 3, 6, 9, 16, 23, 46, 69, 116, 183, 34610770426515116230abundant, semiperfect, composite
3471, 347234813473473461deficient, squarefree, prime
3481, 2, 4, 8, 51, X2, 184, 348865630X5357180188deficient, composite
3491, 3, 117, 349446811E11X11X230119deficient, squarefree, semiprime, composite
34X1, 2, 5, 7, X, 12, 2E, 41, 5X, 82, 185, 34X10716388121912022Xabundant, semiperfect, composite
34E1, 34E2350134E34E34X1deficient, squarefree, prime
3501, 2, 3, 4, 6, 10, 35, 6X, X3, 118, 186, 350108204903X40114238abundant, semiperfect, composite
3511, 15, 25, 35143903E3X3X31439deficient, squarefree, semiprime, composite
3521, 2, 11, 17, 22, 32, 187, 35285X024X2X2X1601E2deficient, squarefree, sphenic, composite
3531, 3, 5, 9, E, 13, 29, 39, 47, 83, 119, 35310660309171X180193deficient, composite
3541, 2, 4, 8, 14, 27, 52, X4, 188, 354X6X83542933180194perfect, semiperfect, composite
3551, 7, 5E, 35544006766662E065deficient, squarefree, semiprime, composite
3561, 2, 3, 6, 6E, 11X, 189, 3568700366747411823Xabundant, semiperfect, squarefree, sphenic, composite
3571, 357235813573573561deficient, squarefree, prime
3581, 2, 4, 5, X, 18, 21, 42, 84, X5, 18X, 35810770414717148210abundant, semiperfect, composite
3591, 3, 11E, 3594480123122122238121deficient, squarefree, semiprime, composite
35X1, 2, 18E, 35X453019219119118X190deficient, squarefree, semiprime, composite
35E1, 35E2360135E35E35X1deficient, squarefree, prime
3601, 2, 3, 4, 6, 7, 8, 9, 10, 12, 16, 19, 20, 24, 30, 36, 48, 53, 60, 70, X6, 120, 190, 36020XX07401017100260abundant, semiperfect, highly abundant, composite
n Divisors d(n) σ(n) s(n) sopf(n) sopfr(n) φ(n) n−φ(n) Notes
3611, 5, 85, 36144308E8X8X29489deficient, squarefree, semiprime, composite
3621, 2, E, 1X, 1E, 3X, 191, 362860025X30301641EXdeficient, squarefree, sphenic, composite
3631, 3, 11, 33, 121, 36365101691425220143deficient, composite
3641, 2, 4, X7, 192, 3646628284X9XE190194deficient, composite
3651, 365236613653653641deficient, squarefree, prime
3661, 2, 3, 5, 6, X, 13, 15, 26, 2X, 43, 71, 86, 122, 193, 366149005562323X827Xabundant, semiperfect, squarefree, composite
3671, 7, 61, 367441469686830067deficient, squarefree, semiprime, composite
3681, 2, 4, 8, 14, 28, 54, X8, 194, 368X713367216194194deficient, perfect power, composite
3691, 3, 9, 17, 23, 49, 123, 36985681EE1X24230139deficient, composite
36X1, 2, 195, 36X4546198197197194196deficient, squarefree, semiprime, composite
36E1, 5, 87, 36E44409190902X08Edeficient, squarefree, semiprime, composite
3701, 2, 3, 4, 6, 10, 37, 72, X9, 124, 196, 370108684E84042120250abundant, semiperfect, composite
3711, E, 3E, 37144004E4X4X32449deficient, squarefree, semiprime, composite
3721, 2, 7, 12, 31, 62, 197, 372864028X3X3X160212deficient, squarefree, sphenic, composite
3731, 3, 125, 37344X0129128128248127deficient, squarefree, semiprime, composite
3741, 2, 4, 5, 8, X, 11, 18, 22, 34, 44, 55, 88, XX, 198, 374148905181820140234abundant, semiperfect, composite
3751, 375237613753753741deficient, squarefree, prime
3761, 2, 3, 6, 9, 16, 25, 4X, 73, 126, 199, 376108164602X31120256abundant, semiperfect, composite
3771, 377237813773773761deficient, squarefree, prime
3781, 2, 4, XE, 19X, 3786650294E1E31981X0deficient, composite
3791, 3, 5, 7, 13, 19, 21, 2E, 63, 89, 127, 379106X832E13181801E9deficient, composite
37X1, 2, 19E, 37X45601X21X11X119X1X0deficient, squarefree, semiprime, composite
37E1, 15, 27, 37E44004140403403Edeficient, squarefree, semiprime, composite
3801, 2, 3, 4, 6, 8, E, 10, 14, 1X, 20, 29, 38, 40, 56, 74, E0, 128, 1X0, 38018X40680141X114268abundant, semiperfect, composite
n Divisors d(n) σ(n) s(n) sopf(n) sopfr(n) φ(n) n−φ(n) Notes
3811, 1E, 38133X1201E3X3621Edeficient, square, perfect power, semiprime, composite
3821, 2, 5, X, 45, 8X, 1X1, 382869030X505015422Xdeficient, squarefree, sphenic, composite
3831, 3, 9, 4E, 129, 38365501895255250133deficient, composite
3841, 2, 4, 7, 12, 17, 24, 32, 64, E1, 1X2, 384107944102426160224abundant, semiperfect, composite
3851, 11, 35, 385441047464634045deficient, squarefree, semiprime, composite
3861, 2, 3, 6, 75, 12X, 1X3, 38687603967X7X12825Xabundant, semiperfect, squarefree, sphenic, composite
3871, 5, 8E, 38744609594942E493deficient, squarefree, semiprime, composite
3881, 2, 4, 8, 57, E2, 1X4, 388871034459611X01X8deficient, composite
3891, 3, 12E, 3894500133132132258131deficient, squarefree, semiprime, composite
38X1, 2, 1X5, 38X45761X81X71X71X41X6deficient, squarefree, semiprime, composite
38E1, 7, E, 41, 65, 38E649010116212E09Edeficient, composite
3901, 2, 3, 4, 5, 6, 9, X, 10, 13, 16, 18, 23, 26, 30, 39, 46, 50, 76, 90, E3, 130, 1X6, 39020E807E0X16100290abundant, semiperfect, highly abundant, composite
3911, 391239213913913901deficient, squarefree, prime
3921, 2, 1X7, 39245801XX1X91X91X61X8deficient, squarefree, semiprime, composite
3931, 3, 131, 3934508135134134260133deficient, squarefree, semiprime, composite
3941, 2, 4, 8, 14, 15, 28, 2X, 58, E4, 1X8, 394107X64121723194200abundant, semiperfect, composite
3951, 5, 91, 395447097969630095deficient, squarefree, semiprime, composite
3961, 2, 3, 6, 7, 11, 12, 19, 22, 33, 36, 66, 77, 132, 1X9, 396149405662121100296abundant, semiperfect, squarefree, composite
3971, 397239813973973961deficient, squarefree, prime
3981, 2, 4, E5, 1XX, 39866862XXE7E91X81E0deficient, composite
3991, 3, 9, 51, 133, 39965721955457260139deficient, composite
39X1, 2, 5, X, E, 1X, 21, 42, 47, 92, 1XE, 39X107903E2161E148252abundant, semiperfect, primitive abundant, composite
39E1, 17, 25, 39E44204140403603Edeficient, squarefree, semiprime, composite
3X01, 2, 3, 4, 6, 8, 10, 1E, 20, 3X, 59, 78, E6, 134, 1E0, 3X014X006202428128274abundant, semiperfect, composite
n Divisors d(n) σ(n) s(n) sopf(n) sopfr(n) φ(n) n−φ(n) Notes
3X11, 7, 67, 3X1445473727233071deficient, squarefree, semiprime, composite
3X21, 2, 1E1, 3X245961E41E31E31E01E2deficient, squarefree, semiprime, composite
3X31, 3, 5, 13, 31, 93, 135, 3X3864025939392001X3deficient, squarefree, sphenic, composite
3X41, 2, 4, E7, 1E2, 3X466982E4E9EE1E01E4deficient, composite
3X51, 3X523X613X53X53X41deficient, squarefree, prime
3X61, 2, 3, 6, 9, 16, 27, 52, 79, 136, 1E3, 3X6108804963033130276abundant, semiperfect, composite
3X71, 11, 37, 3X7443449484836047deficient, squarefree, semiprime, composite
3X81, 2, 4, 5, 7, 8, X, 12, 14, 18, 24, 2E, 34, 48, 5X, 68, 94, E8, 1E4, 3X818X406541218140268abundant, semiperfect, composite
3X91, 3, E, 15, 29, 43, 137, 3X986002132727228181deficient, squarefree, sphenic, composite
3XX1, 2, 1E5, 3XX45X61E81E71E71E41E6deficient, squarefree, semiprime, composite
3XE1, 3XE23E013XE3XE3XX1deficient, squarefree, prime
3E01, 2, 3, 4, 6, 10, 3E, 7X, E9, 138, 1E6, 3E0109405504446134278abundant, semiperfect, composite
3E11, 5, 95, 3E144909E9X9X31499deficient, squarefree, semiprime, composite
3E21, 2, 1E7, 3E245E01EX1E91E91E61E8deficient, squarefree, semiprime, composite
3E31, 3, 7, 9, 19, 23, 53, 69, 139, 3E3X688295X17230183deficient, composite
3E41, 2, 4, 8, 5E, EX, 1E8, 3E4876036861651E4200deficient, composite
3E51, 3E523E613E53E53E41deficient, squarefree, prime
3E61, 2, 3, 5, 6, X, 13, 17, 26, 32, 49, 7E, 96, 13X, 1E9, 3E614X0060625251002E6abundant, semiperfect, squarefree, composite
3E71, 3E723E813E73E73E61deficient, squarefree, prime
3E81, 2, 4, E, 11, 1X, 22, 38, 44, EE, 1EX, 3E8108204242224180238abundant, semiperfect, primitive abundant, composite
3E91, 3, 13E, 3E94540143142142278141deficient, squarefree, semiprime, composite
3EX1, 2, 7, 12, 35, 6X, 1EE, 3EX8700302424218023Xdeficient, squarefree, sphenic, composite
3EE1, 5, 1E, 21, 97, 3EE65201212429308E3deficient, composite
4001, 2, 3, 4, 6, 8, 9, 10, 14, 16, 20, 28, 30, 40, 54, 60, 80, 100, 140, 200, 40019E57757516140280abundant, square, perfect power, semiperfect, composite

## 401 to 500 Edit

n Divisors d(n) σ(n) s(n) sopf(n) sopfr(n) φ(n) n−φ(n) Notes
4011, 401240214014014001deficient, squarefree, prime
4021, 2, 15, 2X, 201, 402664924717301X8216deficient, composite
4031, 3, 141, 4034548145144144280143deficient, squarefree, semiprime, composite
4041, 2, 4, 5, X, 18, 25, 4X, 98, 101, 202, 404108904883032168258abundant, semiperfect, composite
4051, 7, 6E, 405448077767635075deficient, squarefree, semiprime, composite
4061, 2, 3, 6, 81, 142, 203, 40688204168686140286abundant, semiperfect, squarefree, sphenic, composite
4071, E, 45, 407446055545437453deficient, squarefree, semiprime, composite
4081, 2, 4, 8, 61, 102, 204, 408878637X6367200208deficient, composite
4091, 3, 5, 9, 11, 13, 33, 39, 55, 99, 143, 409107703631920200209deficient, composite
40X1, 2, 205, 40X4616208207207204206deficient, squarefree, semiprime, composite
40E1, 40E2410140E40E40X1deficient, squarefree, prime
4101, 2, 3, 4, 6, 7, 10, 12, 19, 24, 36, 41, 70, 82, 103, 144, 206, 41016E1070010191202E0abundant, semiperfect, composite
4111, 17, 27, 411445443424239041deficient, squarefree, semiprime, composite
4121, 2, 5, X, 4E, 9X, 207, 412876034X565617425Xdeficient, squarefree, sphenic, composite
4131, 3, 145, 4134560149148148288147deficient, squarefree, semiprime, composite
4141, 2, 4, 8, 14, 31, 62, 104, 208, 414X82240X3339200214deficient, composite
4151, 415241614154154141deficient, squarefree, prime
4161, 2, 3, 6, 9, E, 16, 1X, 23, 29, 46, 56, 83, 146, 209, 41614X005X6141X1302X6abundant, semiperfect, composite
4171, 5, 7, 15, 2E, 71, 9E, 41786001X52525280157deficient, squarefree, sphenic, composite
4181, 2, 4, 105, 20X, 418673631X107109208210deficient, composite
4191, 3, 147, 419456814E14X14X290149deficient, squarefree, semiprime, composite
41X1, 2, 11, 1E, 22, 3X, 20E, 41X87002X232321X023Xdeficient, squarefree, sphenic, composite
41E1, 41E2420141E41E41X1deficient, squarefree, prime
4201, 2, 3, 4, 5, 6, 8, X, 10, 13, 18, 20, 21, 26, 34, 42, 50, 63, 84, X0, 106, 148, 210, 4202010E0890X17114308abundant, semiperfect, highly abundant, composite
n Divisors d(n) σ(n) s(n) sopf(n) sopfr(n) φ(n) n−φ(n) Notes
4211, 421242214214214201deficient, squarefree, prime
4221, 2, 7, 12, 37, 72, 211, 422874031X4444190252deficient, squarefree, sphenic, composite
4231, 3, 9, 57, 149, 42366181E55X61290153deficient, composite
4241, 2, 4, 107, 212, 424674832410910E210214deficient, composite
4251, 5, E, 47, X1, 42565661411423308119deficient, composite
4261, 2, 3, 6, 85, 14X, 213, 42688604368X8X14829Xabundant, semiperfect, squarefree, sphenic, composite
4271, 427242814274274261deficient, squarefree, prime
4281, 2, 4, 8, 14, 17, 28, 32, 64, 108, 214, 428108904641925200228abundant, semiperfect, composite
4291, 3, 7, 19, 25, 73, 14E, 429868025333332401X9deficient, squarefree, sphenic, composite
42X1, 2, 5, X, 51, X2, 215, 42X8790362585818026Xdeficient, squarefree, sphenic, composite
42E1, 11, 3E, 42E44805150503X04Edeficient, squarefree, semiprime, composite
4301, 2, 3, 4, 6, 9, 10, 15, 16, 2X, 30, 43, 58, 86, 109, 150, 216, 43016E467161X231402E0abundant, semiperfect, composite
4311, 431243214314314301deficient, squarefree, prime
4321, 2, 217, 432465021X219219216218deficient, squarefree, semiprime, composite
4331, 3, 5, 13, 35, X3, 151, 43387002894141228207deficient, squarefree, sphenic, composite
4341, 2, 4, 7, 8, E, 12, 1X, 24, 38, 48, 65, 74, 10X, 218, 43414X005881820180274abundant, semiperfect, composite
4351, 435243614354354341deficient, squarefree, prime
4361, 2, 3, 6, 87, 152, 219, 436888044690901502X6abundant, semiperfect, squarefree, sphenic, composite
4371, 437243814374374361deficient, squarefree, prime
4381, 2, 4, 5, X, 18, 27, 52, X4, 10E, 21X, 438109405043234180278abundant, semiperfect, composite
4391, 3, 9, 1E, 23, 59, 153, 43986802432228290169deficient, composite
43X1, 2, 21E, 43X466022222122121X220deficient, squarefree, semiprime, composite
43E1, 7, 75, 43E45008180803807Edeficient, squarefree, semiprime, composite
4401, 2, 3, 4, 6, 8, 10, 11, 14, 20, 22, 33, 40, 44, 66, 88, 110, 154, 220, 4401810087881620140300abundant, semiperfect, composite
n Divisors d(n) σ(n) s(n) sopf(n) sopfr(n) φ(n) n−φ(n) Notes
4411, 5, 21, X5, 4415551110518358X5deficient, square, perfect power, composite
4421, 2, 221, 4424666224223223220222deficient, squarefree, semiprime, composite
4431, 3, E, 17, 29, 49, 155, 443868023929292601X3deficient, squarefree, sphenic, composite
4441, 2, 4, 111, 222, 444678233X113115220224deficient, composite
4451, 15, 31, 445449047464640045deficient, squarefree, semiprime, composite
4461, 2, 3, 5, 6, 7, 9, X, 12, 13, 16, 19, 26, 2E, 36, 39, 53, 5X, 76, 89, X6, 156, 223, 4462011008761518100346abundant, semiperfect, highly abundant, composite
4471, 447244814474474461deficient, squarefree, prime
4481, 2, 4, 8, 67, 112, 224, 44888403E46971220228deficient, composite
4491, 3, 157, 44945X815E15X15X2E0159deficient, squarefree, semiprime, composite
44X1, 2, 225, 44X4676228227227224226deficient, squarefree, semiprime, composite
44E1, 5, X7, 44E4540E1E0E0360XEdeficient, squarefree, semiprime, composite
4501, 2, 3, 4, 6, 10, 45, 8X, 113, 158, 226, 45010X606104X501542E8abundant, semiperfect, composite
4511, 7, 11, 41, 77, 45165661151823360E1deficient, composite
4521, 2, E, 1X, 25, 4X, 227, 452876030X36361E425Xdeficient, squarefree, sphenic, composite
4531, 3, 9, 5E, 159, 453666020962652E0163deficient, composite
4541, 2, 4, 5, 8, X, 14, 18, 28, 34, 54, 68, X8, 114, 228, 45414X76622717194280abundant, semiperfect, composite
4551, 455245614554554541deficient, squarefree, prime
4561, 2, 3, 6, 8E, 15X, 229, 456890046694941582EXabundant, semiperfect, squarefree, sphenic, composite
4571, 457245814574574561deficient, squarefree, prime
4581, 2, 4, 7, 12, 1E, 24, 3X, 78, 115, 22X, 458109404X4282X1X0278abundant, semiperfect, composite
4591, 3, 5, 13, 37, X9, 15E, 45987402X34343240219deficient, squarefree, sphenic, composite
45X1, 2, 15, 17, 2X, 32, 22E, 45X8760302323220025Xdeficient, squarefree, sphenic, composite
45E1, 45E2460145E45E45X1deficient, squarefree, prime
4601, 2, 3, 4, 6, 8, 9, 10, 16, 20, 23, 30, 46, 60, 69, 90, 116, 160, 230, 460181073813516160300abundant, semiperfect, composite
n Divisors d(n) σ(n) s(n) sopf(n) sopfr(n) φ(n) n−φ(n) Notes
4611, E, 4E, 46145005E5X5X40459deficient, squarefree, semiprime, composite
4621, 2, 5, X, 11, 21, 22, 42, 55, XX, 231, 4621090646418211802X2abundant, semiperfect, primitive abundant, composite
4631, 3, 7, 19, 27, 79, 161, 46387142713535260203deficient, squarefree, sphenic, composite
4641, 2, 4, 117, 232, 46467E835411911E230234deficient, composite
4651, 465246614654654641deficient, squarefree, prime
4661, 2, 3, 6, 91, 162, 233, 46689204769696160306abundant, semiperfect, squarefree, sphenic, composite
4671, 5, XE, 4674560E5E4E4374E3deficient, squarefree, semiprime, composite
4681, 2, 4, 8, 14, 35, 6X, 118, 234, 468X90645X3741228240deficient, composite
4691, 3, 9, 61, 163, 46966822156467300169deficient, composite
46X1, 2, 7, 12, 3E, 7X, 235, 46X880035248481E027Xdeficient, squarefree, sphenic, composite
46E1, 46E2470146E46E46X1deficient, squarefree, prime
4701, 2, 3, 4, 5, 6, X, E, 10, 13, 18, 1X, 26, 29, 38, 47, 50, 56, 92, E0, 119, 164, 236, 470201200950191E114358abundant, semiperfect, highly abundant, composite
4711, 471247214714714701deficient, squarefree, prime
4721, 2, 237, 47246E023X239239236238deficient, squarefree, semiprime, composite
4731, 3, 11, 15, 33, 43, 165, 473870024929292801E3deficient, squarefree, sphenic, composite
4741, 2, 4, 8, 6E, 11X, 238, 47488904187175234240deficient, composite
4751, 5, 7, 17, 2E, 7E, E1, 47586802072727300175deficient, squarefree, sphenic, composite
4761, 2, 3, 6, 9, 16, 31, 62, 93, 166, 239, 47610X365803639160316abundant, semiperfect, composite
4771, 1E, 25, 477450045444443443deficient, squarefree, semiprime, composite
4781, 2, 4, 11E, 23X, 4786820364121123238240deficient, composite
4791, 3, 167, 479462816E16X16X310169deficient, squarefree, semiprime, composite
47X1, 2, 5, X, 57, E2, 23E, 47X88603X262621X029Xdeficient, squarefree, sphenic, composite
47E1, E, 51, 47E45206160604205Edeficient, squarefree, semiprime, composite
4801, 2, 3, 4, 6, 7, 8, 10, 12, 14, 19, 20, 24, 28, 36, 40, 48, 70, 80, 94, 120, 168, 240, 4802012009401018140340abundant, semiperfect, composite
n Divisors d(n) σ(n) s(n) sopf(n) sopfr(n) φ(n) n−φ(n) Notes
4811, 481248214814814801deficient, squarefree, prime
4821, 2, 241, 4824706244243243240242deficient, squarefree, semiprime, composite
4831, 3, 5, 9, 13, 21, 23, 39, 63, E3, 169, 483108743E1817260223deficient, composite
4841, 2, 4, 11, 22, 44, 121, 242, 48498X94251326220264deficient, square, perfect power, composite
4851, 485248614854854841deficient, squarefree, prime
4861, 2, 3, 6, 95, 16X, 243, 48689604969X9X16831Xabundant, semiperfect, squarefree, sphenic, composite
4871, 7, 81, 487455489888840087deficient, squarefree, semiprime, composite
4881, 2, 4, 5, 8, X, 15, 18, 2X, 34, 58, 71, E4, 122, 244, 48814E3066420241942E4abundant, semiperfect, composite
4891, 3, 16E, 4894640173172172318171deficient, squarefree, semiprime, composite
48X1, 2, E, 1X, 27, 52, 245, 48X8800332383821027Xdeficient, squarefree, sphenic, composite
48E1, 48E2490148E48E48X1deficient, squarefree, prime
4901, 2, 3, 4, 6, 9, 10, 16, 17, 30, 32, 49, 64, 96, 123, 170, 246, 4901610787X82025160330abundant, semiperfect, composite
4911, 5, E5, 4914590EEEXEX394E9deficient, squarefree, semiprime, composite
4921, 2, 7, 12, 41, 82, 247, 492884036X91E206288deficient, composite
4931, 3, 171, 4934648175174174320173deficient, squarefree, semiprime, composite
4941, 2, 4, 8, 14, 37, 72, 124, 248, 494X9584843943240254deficient, composite
4951, 11, 45, 495453057565644055deficient, squarefree, semiprime, composite
4961, 2, 3, 5, 6, X, 13, 1E, 26, 3X, 59, 97, E6, 172, 249, 496141000726292912836Xabundant, semiperfect, squarefree, composite
4971, 497249814974974961deficient, squarefree, prime
4981, 2, 4, 125, 24X, 498685637X127129248250deficient, composite
4991, 3, 7, 9, E, 19, 29, 53, 65, 83, 173, 499108803X31920260239deficient, composite
49X1, 2, 24E, 49X473025225125124X250deficient, squarefree, semiprime, composite
49E1, 5, E7, 49E45X01011001003X0EEdeficient, squarefree, semiprime, composite
4X01, 2, 3, 4, 6, 8, 10, 20, 25, 4X, 73, 98, 126, 174, 250, 4X01410607802X32168334abundant, semiperfect, composite
n Divisors d(n) σ(n) s(n) sopf(n) sopfr(n) φ(n) n−φ(n) Notes
4X11, 15, 35, 4X145304E4X4X45449deficient, squarefree, semiprime, composite
4X21, 2, 251, 4X24736254253253250252deficient, squarefree, semiprime, composite
4X31, 3, 175, 4X34660179178178328177deficient, squarefree, semiprime, composite
4X41, 2, 4, 5, 7, X, 12, 18, 21, 24, 2E, 42, 5X, 84, E8, 127, 252, 4X41610087241219180324abundant, semiperfect, composite
4X51, 4X524X614X54X54X41deficient, squarefree, prime
4X61, 2, 3, 6, 9, 11, 16, 22, 23, 33, 46, 66, 99, 176, 253, 4X614E806961620160346abundant, semiperfect, composite
4X71, 17, 31, 4X7453449484846047deficient, squarefree, semiprime, composite
4X81, 2, 4, 8, E, 14, 1X, 28, 38, 54, 74, 128, 254, 4X812X70584111E228280abundant, semiperfect, composite
4X91, 3, 5, 13, 3E, E9, 177, 4X988003134747268241deficient, squarefree, sphenic, composite
4XX1, 2, 255, 4XX4746258257257254256deficient, squarefree, semiprime, composite
4XE1, 7, 85, 4XE45809190904208Edeficient, squarefree, semiprime, composite
4E01, 2, 3, 4, 6, 10, 4E, 9X, 129, 178, 256, 4E010E806905456174338abundant, semiperfect, composite
4E11, 4E124E214E14E14E01deficient, squarefree, prime
4E21, 2, 5, X, 5E, EX, 257, 4E2890040X66661E42EXdeficient, squarefree, sphenic, composite
4E31, 3, 9, 67, 179, 4E367282356X71330183deficient, composite
4E41, 2, 4, 8, 75, 12X, 258, 4E48946452777E254260deficient, composite
4E51, 1E, 27, 4E5454047464647045deficient, squarefree, semiprime, composite
4E61, 2, 3, 6, 7, 12, 15, 19, 2X, 36, 43, 86, 9E, 17X, 259, 4E61410007062525140376abundant, semiperfect, squarefree, composite
4E71, 5, E, 11, 47, 55, EE, 4E787002052525340177deficient, squarefree, sphenic, composite
4E81, 2, 4, 12E, 25X, 4E86890394131133258260deficient, composite
4E91, 3, 17E, 4E94680183182182338181deficient, squarefree, semiprime, composite
4EX1, 2, 25E, 4EX476026226126125X260deficient, squarefree, semiprime, composite
4EE1, 4EE250014EE4EE4EX1deficient, squarefree, prime
5001, 2, 3, 4, 5, 6, 8, 9, X, 10, 13, 14, 16, 18, 20, 26, 30, 34, 39, 40, 50, 60, 68, 76, X0, 100, 130, 180, 260, 500261496E96X17140380abundant, semiperfect, highly composite, highly abundant, composite

## 501 to 600 Edit

n Divisors d(n) σ(n) s(n) sopf(n) sopfr(n) φ(n) n−φ(n) Notes
5011, 7, 87, 501459493929243091deficient, squarefree, semiprime, composite
5021, 2, 17, 32, 261, 50267E32E11934246278deficient, composite
5031, 3, 181, 5034688185184184340183deficient, squarefree, semiprime, composite
5041, 2, 4, 131, 262, 50468X239X133135260264deficient, composite
5051, 5, 21, 25, 101, 50566561512X333X8119deficient, composite
5061, 2, 3, 6, E, 1X, 29, 56, X1, 182, 263, 50610E106061423164362abundant, semiperfect, composite
5071, 507250815075075061deficient, squarefree, prime
5081, 2, 4, 7, 8, 11, 12, 22, 24, 44, 48, 77, 88, 132, 264, 50814E806741X22200308abundant, semiperfect, composite
5091, 3, 9, 23, 69, 183, 5097771264316346183deficient, square, perfect power, composite
50X1, 2, 5, X, 61, 102, 265, 50X8930422686820030Xdeficient, squarefree, sphenic, composite
50E1, 15, 37, 50E45605150504804Edeficient, squarefree, semiprime, composite
5101, 2, 3, 4, 6, 10, 51, X2, 133, 184, 266, 5101010086E85658180350abundant, semiperfect, composite
5111, 511251215115115101deficient, squarefree, prime
5121, 2, 267, 512478026X269269266268deficient, squarefree, semiprime, composite
5131, 3, 5, 7, 13, 19, 2E, 41, 89, 103, 185, 51310960449131X240293deficient, composite
5141, 2, 4, 8, 14, 1E, 28, 3X, 78, 134, 268, 51410X605482129254280abundant, semiperfect, composite
5151, E, 57, 515458067666647065deficient, squarefree, semiprime, composite
5161, 2, 3, 6, 9, 16, 35, 6X, X3, 186, 269, 51610E466303X41180356abundant, semiperfect, composite
5171, 517251815175175161deficient, squarefree, prime
5181, 2, 4, 5, X, 18, 31, 62, 104, 135, 26X, 51810E105E4383X200318abundant, semiperfect, composite
5191, 3, 11, 17, 33, 49, 187, 51987942772E2E300219deficient, squarefree, sphenic, composite
51X1, 2, 7, 12, 45, 8X, 26E, 51X89003X252522202EXdeficient, squarefree, sphenic, composite
51E1, 51E2520151E51E51X1deficient, squarefree, prime
5201, 2, 3, 4, 6, 8, 10, 20, 27, 52, 79, X4, 136, 188, 270, 5201411408203034180360abundant, semiperfect, composite
n Divisors d(n) σ(n) s(n) sopf(n) sopfr(n) φ(n) n−φ(n) Notes
5211, 5, 105, 521463010E10X10X414109deficient, squarefree, semiprime, composite
5221, 2, 271, 5224796274273273270272deficient, squarefree, semiprime, composite
5231, 3, 9, 6E, 189, 52367702497275350193deficient, composite
5241, 2, 4, E, 15, 1X, 2X, 38, 58, 137, 272, 52410X6053826282282E8abundant, semiperfect, primitive abundant, composite
5251, 7, 8E, 525460097969645095deficient, squarefree, semiprime, composite
5261, 2, 3, 5, 6, X, 13, 21, 26, 42, 63, X5, 106, 18X, 273, 526141100796X1814839Xabundant, semiperfect, composite
5271, 527252815275275261deficient, squarefree, prime
5281, 2, 4, 8, 14, 3E, 7X, 138, 274, 528XX405144147268280deficient, composite
5291, 3, 18E, 5294700193192192358191deficient, squarefree, semiprime, composite
52X1, 2, 11, 22, 25, 4X, 275, 52X889036238382402XXdeficient, squarefree, sphenic, composite
52E1, 5, 107, 52E464011111011042010Edeficient, squarefree, semiprime, composite
5301, 2, 3, 4, 6, 7, 9, 10, 12, 16, 19, 23, 24, 30, 36, 46, 53, 70, 90, X6, 139, 190, 276, 530201368X381018160390abundant, semiperfect, composite
5311, 531253215315315301deficient, squarefree, prime
5321, 2, 277, 53247E027X279279276278deficient, squarefree, semiprime, composite
5331, 3, E, 1E, 29, 59, 191, 53388002893131308227deficient, squarefree, sphenic, composite
5341, 2, 4, 5, 8, X, 17, 18, 32, 34, 64, 7E, 108, 13X, 278, 5341410607282226200334abundant, semiperfect, composite
5351, 535253615355355341deficient, squarefree, prime
5361, 2, 3, 6, X7, 192, 279, 5368X80546E0E0190366abundant, semiperfect, squarefree, sphenic, composite
5371, 7, 91, 537461499989846097deficient, squarefree, semiprime, composite
5381, 2, 4, 13E, 27X, 5386940404141143278280deficient, composite
5391, 3, 5, 9, 13, 15, 39, 43, 71, 109, 193, 539109904532124280279deficient, composite
53X1, 2, 27E, 53X480028228128127X280deficient, squarefree, semiprime, composite
53E1, 11, 4E, 53E45X06160604X05Edeficient, squarefree, semiprime, composite
5401, 2, 3, 4, 6, 8, 10, 14, 20, 28, 40, 54, 80, X8, 140, 194, 280, 5401612248X4517194368abundant, semiperfect, composite
n Divisors d(n) σ(n) s(n) sopf(n) sopfr(n) φ(n) n−φ(n) Notes
5411, 541254215415415401deficient, squarefree, prime
5421, 2, 5, 7, X, E, 12, 1X, 2E, 47, 5X, 65, 92, 10X, 281, 54214100067X2121180382abundant, semiperfect, squarefree, composite
5431, 3, 195, 5434720199198198368197deficient, squarefree, semiprime, composite
5441, 2, 4, 141, 282, 544695240X143145280284deficient, composite
5451, 545254615455455441deficient, squarefree, prime
5461, 2, 3, 6, 9, 16, 37, 72, X9, 196, 283, 54610EE06664043190376abundant, semiperfect, composite
5471, 5, 21, 27, 10E, 54766X81613035420127deficient, composite
5481, 2, 4, 8, 81, 142, 284, 5488X2649X8387280288deficient, composite
5491, 3, 7, 19, 31, 93, 197, 54988543073E3E300249deficient, squarefree, sphenic, composite
54X1, 2, 285, 54X4816288287287284286deficient, squarefree, semiprime, composite
54E1, 17, 35, 54E45X05150505004Edeficient, squarefree, semiprime, composite
5501, 2, 3, 4, 5, 6, X, 10, 11, 13, 18, 22, 26, 33, 44, 50, 55, 66, XX, 110, 143, 198, 286, 550201440XE01E21140410abundant, semiperfect, composite
5511, E, 5E, 55146006E6X6X4X469deficient, squarefree, semiprime, composite
5521, 2, 15, 1E, 2X, 3X, 287, 552890036X36362542EXdeficient, squarefree, sphenic, composite
5531, 3, 9, 23, 25, 73, 199, 55388402X928323601E3deficient, composite
5541, 2, 4, 7, 8, 12, 14, 24, 41, 48, 82, 94, 144, 288, 55413103369E91X240314abundant, square, perfect power, semiperfect, composite
5551, 5, 111, 5554670117116116440115deficient, squarefree, semiprime, composite
5561, 2, 3, 6, XE, 19X, 289, 5568E00566E4E419837Xabundant, semiperfect, squarefree, sphenic, composite
5571, 557255815575575561deficient, squarefree, prime
5581, 2, 4, 145, 28X, 558697641X147149288290deficient, composite
5591, 3, 19E, 55947401X31X21X23781X1deficient, squarefree, semiprime, composite
55X1, 2, 5, X, 67, 112, 28E, 55X8X00462727222033Xdeficient, squarefree, sphenic, composite
55E1, 7, 95, 55E4640X1X0X04809Edeficient, squarefree, semiprime, composite
5601, 2, 3, 4, 6, 8, 9, E, 10, 16, 1X, 20, 29, 30, 38, 56, 60, 74, 83, E0, 146, 1X0, 290, 560201430X90141E1803X0abundant, semiperfect, composite
n Divisors d(n) σ(n) s(n) sopf(n) sopfr(n) φ(n) n−φ(n) Notes
5611, 11, 51, 561460463626250061deficient, squarefree, semiprime, composite
5621, 2, 291, 5624836294293293290292deficient, squarefree, semiprime, composite
5631, 3, 5, 13, 45, 113, 1X1, 563890035951512X8277deficient, squarefree, sphenic, composite
5641, 2, 4, 147, 292, 564698842414914E290294deficient, composite
5651, 565256615655655641deficient, squarefree, prime
5661, 2, 3, 6, 7, 12, 17, 19, 32, 36, 49, 96, E1, 1X2, 293, 5661411407962727160406abundant, semiperfect, squarefree, composite
5671, 15, 3E, 567460055545451453deficient, squarefree, semiprime, composite
5681, 2, 4, 5, 8, X, 14, 18, 21, 28, 34, 42, 68, 84, 114, 148, 294, 568161169801718228340abundant, semiperfect, composite
5691, 3, 9, 75, 1X3, 5696816269787E3801X9deficient, composite
56X1, 2, 295, 56X4846298297297294296deficient, squarefree, semiprime, composite
56E1, E, 61, 56E46207170705006Edeficient, squarefree, semiprime, composite
5701, 2, 3, 4, 6, 10, 57, E2, 149, 1X4, 296, 57010112877860621X0390abundant, semiperfect, composite
5711, 5, 7, 1E, 2E, 97, 115, 571880024E2E2E3801E1deficient, squarefree, sphenic, composite
5721, 2, 11, 22, 27, 52, 297, 572894038X3X3X260312deficient, squarefree, sphenic, composite
5731, 3, 1X5, 57347601X91X81X83881X7deficient, squarefree, semiprime, composite
5741, 2, 4, 8, 85, 14X, 298, 5748X76502878E2942X0deficient, composite
5751, 575257615755755741deficient, squarefree, prime
5761, 2, 3, 5, 6, 9, X, 13, 16, 23, 26, 39, 46, 69, 76, E3, 116, 1X6, 299, 576181316960X17160416abundant, semiperfect, composite
5771, 577257815775775761deficient, squarefree, prime
5781, 2, 4, 7, 12, 24, 25, 4X, 98, 14E, 29X, 57810E806043234240338abundant, semiperfect, composite
5791, 3, 1X7, 57947681XE1XX1XX3901X9deficient, squarefree, semiprime, composite
57X1, 2, E, 1X, 31, 62, 29E, 57X89603X2424226031Xdeficient, squarefree, sphenic, composite
57E1, 5, 117, 57E46X012112012046011Edeficient, squarefree, semiprime, composite
5801, 2, 3, 4, 6, 8, 10, 14, 15, 20, 2X, 40, 43, 58, 86, E4, 150, 1X8, 2X0, 5801813609X01X241943X8abundant, semiperfect, composite
n Divisors d(n) σ(n) s(n) sopf(n) sopfr(n) φ(n) n−φ(n) Notes
5811, 17, 37, 581461453525253051deficient, squarefree, semiprime, composite
5821, 2, 2X1, 58248662X42X32X32X02X2deficient, squarefree, semiprime, composite
5831, 3, 7, 9, 11, 19, 33, 53, 77, 99, 1X9, 58310X144511E22300283deficient, composite
5841, 2, 4, 5, X, 18, 35, 6X, 118, 151, 2X2, 5841010306684042228358abundant, semiperfect, composite
5851, 585258615855855841deficient, squarefree, prime
5861, 2, 3, 6, E5, 1XX, 2X3, 5868E60596EXEX1X839Xabundant, semiperfect, squarefree, sphenic, composite
5871, 587258815875875861deficient, squarefree, prime
5881, 2, 4, 8, 87, 152, 2X4, 5888XX051489912X02X8deficient, composite
5891, 3, 5, E, 13, 21, 29, 47, 63, 119, 1XE, 58910X4047317202942E5deficient, composite
58X1, 2, 7, 12, 4E, 9X, 2X5, 58X8X00432585825033Xdeficient, squarefree, sphenic, composite
58E1, 58E2590158E58E58X1deficient, squarefree, prime
5901, 2, 3, 4, 6, 9, 10, 16, 1E, 30, 3X, 59, 78, E6, 153, 1E0, 2X6, 59016132095024291X03E0abundant, semiperfect, composite
5911, 591259215915915901deficient, squarefree, prime
5921, 2, 5, X, 6E, 11X, 2X7, 5928X6048X767623435Xdeficient, squarefree, sphenic, composite
5931, 3, 1E1, 59347881E51E41E43X01E3deficient, squarefree, semiprime, composite
5941, 2, 4, 8, 11, 14, 22, 28, 44, 54, 88, 154, 2X8, 59412104266X1321280314abundant, semiperfect, composite
5951, 7, 15, 41, 9E, 59567161412027480115deficient, composite
5961, 2, 3, 6, E7, 1E2, 2X9, 5968E805X61001001E03X6abundant, semiperfect, squarefree, sphenic, composite
5971, 5, 11E, 5974700125124124474123deficient, squarefree, semiprime, composite
5981, 2, 4, E, 17, 1X, 32, 38, 64, 155, 2XX, 59810E805X4282X260338abundant, weird, primitive abundant, composite
5991, 3, 9, 23, 27, 79, 1E3, 59988X830E2X34390209deficient, composite
59X1, 2, 2XE, 59X48902E22E12E12XX2E0deficient, squarefree, semiprime, composite
59E1, 59E25X0159E59E59X1deficient, squarefree, prime
5X01, 2, 3, 4, 5, 6, 7, 8, X, 10, 12, 13, 18, 19, 20, 24, 26, 2E, 34, 36, 48, 50, 5X, 70, 89, X0, E8, 120, 156, 1E4, 2E0, 5X028180012201519140460abundant, semiperfect, highly composite, highly abundant, composite
n Divisors d(n) σ(n) s(n) sopf(n) sopfr(n) φ(n) n−φ(n) Notes
5X11, 25, 5X1360726254X57825deficient, square, perfect power, semiprime, composite
5X21, 2, 2E1, 5X248962E42E32E32E02E2deficient, squarefree, semiprime, composite
5X31, 3, 1E5, 5X347X01E91E81E83X81E7deficient, squarefree, semiprime, composite
5X41, 2, 4, 157, 2E2, 5X46X3845415915E2E02E4deficient, composite
5X51, 5, 11, 55, 121, 5X567761911627440165deficient, composite
5X61, 2, 3, 6, 9, 16, 3E, 7X, E9, 1E6, 2E3, 5X610110071644471E03E6abundant, semiperfect, composite
5X71, 7, E, 65, X1, 5X767481611625470137deficient, composite
5X81, 2, 4, 8, 14, 45, 8X, 158, 2E4, 5X8XE7658X47512X8300deficient, composite
5X91, 3, 1E7, 5X947X81EE1EX1EX3E01E9deficient, squarefree, semiprime, composite
5XX1, 2, 5, X, 15, 21, 2X, 42, 71, 122, 2E5, 5XX10E765882025228382deficient, composite
5XE1, 1E, 31, 5XE46405150505604Edeficient, squarefree, semiprime, composite
5E01, 2, 3, 4, 6, 10, 5E, EX, 159, 1E8, 2E6, 5E010120081064661E43E8abundant, semiperfect, composite
5E11, 5E125E215E15E15E01deficient, squarefree, prime
5E21, 2, 7, 12, 51, X2, 2E7, 5E28X4044X5X5X260352deficient, squarefree, sphenic, composite
5E31, 3, 5, 9, 13, 17, 39, 49, 7E, 123, 1E9, 5E310XX04X923263002E3deficient, composite
5E41, 2, 4, 8, 8E, 15X, 2E8, 5E48E3053891952E4300deficient, composite
5E51, 5E525E615E55E55E41deficient, squarefree, prime
5E61, 2, 3, 6, E, 11, 1X, 22, 29, 33, 56, 66, EE, 1EX, 2E9, 5E61412008062525180436abundant, semiperfect, squarefree, composite
5E71, 5E725E815E75E75E61deficient, squarefree, prime
5E81, 2, 4, 5, X, 18, 37, 72, 124, 15E, 2EX, 5E81010X06X44244240378abundant, semiperfect, composite
5E91, 3, 7, 19, 35, X3, 1EE, 5E989403434343340279deficient, squarefree, sphenic, composite
5EX1, 2, 2EE, 5EX49003023013012EX300deficient, squarefree, semiprime, composite
5EE1, 5EE260015EE5EE5EX1deficient, squarefree, prime
6001, 2, 3, 4, 6, 8, 9, 10, 14, 16, 20, 23, 28, 30, 40, 46, 60, 80, 90, 100, 160, 200, 300, 600201560E60517200400abundant, semiperfect, composite

## 601 to 700 Edit

n Divisors d(n) σ(n) s(n) sopf(n) sopfr(n) φ(n) n−φ(n) Notes
6011, 5, 125, 601473012E12X12X494129deficient, squarefree, semiprime, composite
6021, 2, 301, 6024906304303303300302deficient, squarefree, semiprime, composite
6031, 3, 15, 43, 201, 6036864261183139422Edeficient, composite
6041, 2, 4, 7, 12, 24, 27, 52, X4, 161, 302, 6041010546503436260364abundant, semiperfect, composite
6051, E, 67, 605468077767655075deficient, squarefree, semiprime, composite
6061, 2, 3, 5, 6, X, 13, 25, 26, 4X, 73, 101, 126, 202, 303, 6061413008E6333316845Xabundant, semiperfect, squarefree, composite
6071, 11, 57, 607467469686856067deficient, squarefree, semiprime, composite
6081, 2, 4, 8, 91, 162, 304, 6088E5654X9397300308deficient, composite
6091, 3, 9, 81, 203, 60968X22958487400209deficient, composite
60X1, 2, 17, 1E, 32, 3X, 305, 60X8X003E2383829033Xdeficient, squarefree, sphenic, composite
60E1, 5, 7, 21, 2E, X5, 127, 60E8880271101X4201XEdeficient, composite
6101, 2, 3, 4, 6, 10, 61, 102, 163, 204, 306, 6101012488386668200410abundant, semiperfect, composite
6111, 611261216116116101deficient, squarefree, prime
6121, 2, 307, 612492030X309309306308deficient, squarefree, semiprime, composite
6131, 3, 205, 6134820209208208408207deficient, squarefree, semiprime, composite
6141, 2, 4, 5, 8, X, E, 14, 18, 1X, 34, 38, 47, 68, 74, 92, 128, 164, 308, 61418136094816202283X8abundant, semiperfect, composite
6151, 615261616156156141deficient, squarefree, prime
6161, 2, 3, 6, 7, 9, 12, 16, 19, 36, 41, 53, 82, X6, 103, 206, 309, 616161353939101X190446abundant, semiperfect, composite
6171, 617261816176176161deficient, squarefree, prime
6181, 2, 4, 11, 15, 22, 2X, 44, 58, 165, 30X, 618101030614282X280358deficient, composite
6191, 3, 5, 13, 4E, 129, 207, 6198X003X357573282E1deficient, squarefree, sphenic, composite
61X1, 2, 30E, 61X493031231131130X310deficient, squarefree, semiprime, composite
61E1, 61E2620161E61E61X1deficient, squarefree, prime
6201, 2, 3, 4, 6, 8, 10, 20, 31, 62, 93, 104, 166, 208, 310, 6201413X0980363X200420abundant, semiperfect, composite
n Divisors d(n) σ(n) s(n) sopf(n) sopfr(n) φ(n) n−φ(n) Notes
6211, 7, X7, 6214714E3E2E2530E1deficient, squarefree, semiprime, composite
6221, 2, 5, X, 75, 12X, 311, 6228E3050X808025438Xdeficient, squarefree, sphenic, composite
6231, 3, 9, E, 23, 29, 69, 83, 209, 623XX103X9121E390253deficient, composite
6241, 2, 4, 167, 312, 6246XX848416916E310314deficient, composite
6251, 17, 3E, 625468057565659055deficient, squarefree, semiprime, composite
6261, 2, 3, 6, 105, 20X, 313, 6268106063610X10X20841Xabundant, semiperfect, squarefree, sphenic, composite
6271, 5, 12E, 62747601351341344E4133deficient, squarefree, semiprime, composite
6281, 2, 4, 7, 8, 12, 14, 24, 28, 48, 54, 94, X8, 168, 314, 6281412207E4919280368abundant, semiperfect, composite
6291, 3, 11, 1E, 33, 59, 20E, 62989403133333380269deficient, squarefree, sphenic, composite
62X1, 2, 315, 62X4946318317317314316deficient, squarefree, semiprime, composite
62E1, 25, 27, 62E46805150505X04Edeficient, squarefree, semiprime, composite
6301, 2, 3, 4, 5, 6, 9, X, 10, 13, 16, 18, 21, 26, 30, 39, 42, 50, 63, 76, 84, 106, 130, 169, 210, 316, 6302317711141X18180470abundant, square, perfect power, semiperfect, composite
6311, 15, 45, 63146905E5X5X59459deficient, squarefree, semiprime, composite
6321, 2, E, 1X, 35, 6X, 317, 6328X6042X464629435Xdeficient, squarefree, sphenic, composite
6331, 3, 7, 19, 37, X9, 211, 63389943614545360293deficient, squarefree, sphenic, composite
6341, 2, 4, 8, 95, 16X, 318, 6348EX6572979E314320deficient, composite
6351, 5, 131, 6354770137136136500135deficient, squarefree, semiprime, composite
6361, 2, 3, 6, 107, 212, 319, 63681080646110110210426abundant, semiperfect, squarefree, sphenic, composite
6371, 637263816376376361deficient, squarefree, prime
6381, 2, 4, 16E, 31X, 6386E10494171173318320deficient, composite
6391, 3, 9, 85, 213, 63969262X9888E420219deficient, composite
63X1, 2, 5, 7, X, 11, 12, 22, 2E, 55, 5X, 77, XX, 132, 31E, 63X141200782232320043Xabundant, semiperfect, squarefree, composite
63E1, 63E2640163E63E63X1deficient, squarefree, prime
6401, 2, 3, 4, 6, 8, 10, 14, 17, 20, 32, 40, 49, 64, 96, 108, 170, 214, 320, 640181528XX82026200440abundant, semiperfect, composite
n Divisors d(n) σ(n) s(n) sopf(n) sopfr(n) φ(n) n−φ(n) Notes
6411, E, 6E, 64147007E7X7X58479deficient, squarefree, semiprime, composite
6421, 2, 321, 6424966324323323320322deficient, squarefree, semiprime, composite
6431, 3, 5, 13, 51, 133, 215, 6438X403E95959340303deficient, squarefree, sphenic, composite
6441, 2, 4, 171, 322, 6446E2249X173175320324deficient, composite
6451, 7, XE, 6454740E7E6E6550E5deficient, squarefree, semiprime, composite
6461, 2, 3, 6, 9, 15, 16, 23, 2X, 43, 46, 86, 109, 216, 323, 6461413008761X24200446abundant, semiperfect, composite
6471, 647264816476476461deficient, squarefree, prime
6481, 2, 4, 5, 8, X, 18, 1E, 34, 3X, 78, 97, 134, 172, 324, 648141300874262X2543E4abundant, semiperfect, composite
6491, 3, 217, 649486821E21X21X430219deficient, squarefree, semiprime, composite
64X1, 2, 325, 64X4976328327327324326deficient, squarefree, semiprime, composite
64E1, 11, 5E, 64E47007170705X06Edeficient, squarefree, semiprime, composite
6501, 2, 3, 4, 6, 7, E, 10, 12, 19, 1X, 24, 29, 36, 38, 56, 65, 70, E0, 10X, 173, 218, 326, 65020168010301E21180490abundant, semiperfect, composite
6511, 5, 21, 31, 135, 6516822191363E500151deficient, composite
6521, 2, 327, 652498032X329329326328deficient, squarefree, semiprime, composite
6531, 3, 9, 87, 219, 65369482E58X91430223deficient, composite
6541, 2, 4, 8, 14, 25, 28, 4X, 98, 174, 328, 6541011166822733314340abundant, semiperfect, composite
6551, 655265616556556541deficient, squarefree, prime
6561, 2, 3, 5, 6, X, 13, 26, 27, 52, 79, 10E, 136, 21X, 329, 6561414009663535180496abundant, semiperfect, squarefree, composite
6571, 7, 17, 41, E1, 65767E01552229530127deficient, composite
6581, 2, 4, 175, 32X, 6586E464XX177179328330deficient, composite
6591, 3, 21E, 6594880223222222438221deficient, squarefree, semiprime, composite
65X1, 2, 32E, 65X499033233133132X330deficient, squarefree, semiprime, composite
65E1, 5, E, 15, 47, 71, 137, 65E89002612929454207deficient, squarefree, sphenic, composite
6601, 2, 3, 4, 6, 8, 9, 10, 11, 16, 20, 22, 30, 33, 44, 60, 66, 88, 99, 110, 176, 220, 330, 6602016E610561621200460abundant, semiperfect, composite
n Divisors d(n) σ(n) s(n) sopf(n) sopfr(n) φ(n) n−φ(n) Notes
6611, 661266216616616601deficient, squarefree, prime
6621, 2, 7, 12, 57, E2, 331, 6628E4049X6464290392deficient, squarefree, sphenic, composite
6631, 3, 221, 6634888225224224440223deficient, squarefree, semiprime, composite
6641, 2, 4, 5, X, 18, 3E, 7X, 138, 177, 332, 66410120075846482683E8abundant, semiperfect, composite
6651, 665266616656656641deficient, squarefree, prime
6661, 2, 3, 6, 111, 222, 333, 66681120676116116220446abundant, semiperfect, squarefree, sphenic, composite
6671, 1E, 35, 667470055545461453deficient, squarefree, semiprime, composite
6681, 2, 4, 8, 14, 4E, 9X, 178, 334, 668X10E06445157328340deficient, composite
6691, 3, 5, 7, 9, 13, 19, 23, 2E, 39, 53, 89, E3, 139, 223, 6691411406931319300369abundant, semiperfect, primitive abundant, composite
66X1, 2, E, 1X, 37, 72, 335, 66X8E0045248482E037Xdeficient, squarefree, sphenic, composite
66E1, 66E2670166E66E66X1deficient, squarefree, prime
6701, 2, 3, 4, 6, 10, 67, 112, 179, 224, 336, 6701013688E87072220450abundant, semiperfect, composite
6711, 11, 61, 671472473727260071deficient, squarefree, semiprime, composite
6721, 2, 5, X, 17, 21, 32, 42, 7E, 13X, 337, 6721010E063X2227260412deficient, composite
6731, 3, 225, 67348X0229228228448227deficient, squarefree, semiprime, composite
6741, 2, 4, 7, 8, 12, 15, 24, 2X, 48, 58, 9E, E4, 17X, 338, 67414130084822262803E4abundant, semiperfect, composite
6751, 675267616756756741deficient, squarefree, prime
6761, 2, 3, 6, 9, 16, 45, 8X, 113, 226, 339, 6761012768004X51220456abundant, semiperfect, composite
6771, 5, 13E, 6774800145144144534143deficient, squarefree, semiprime, composite
6781, 2, 4, 17E, 33X, 6786E80504181183338340deficient, composite
6791, 3, E, 25, 29, 73, 227, 6798X0034337373X8291deficient, squarefree, sphenic, composite
67X1, 2, 33E, 67X4X0034234134133X340deficient, squarefree, semiprime, composite
67E1, 7, E5, 67E4780101100100580EEdeficient, squarefree, semiprime, composite
6801, 2, 3, 4, 5, 6, 8, X, 10, 13, 14, 18, 20, 26, 28, 34, 40, 50, 54, 68, 80, X0, 114, 140, 180, 228, 340, 6802419201260X181944X8abundant, semiperfect, highly abundant, composite
n Divisors d(n) σ(n) s(n) sopf(n) sopfr(n) φ(n) n−φ(n) Notes
6811, 27, 68136X928275265627deficient, square, perfect power, semiprime, composite
6821, 2, 11, 22, 31, 62, 341, 6828E1044X4444300382deficient, squarefree, sphenic, composite
6831, 3, 9, 8E, 229, 68369903099295450233deficient, composite
6841, 2, 4, 181, 342, 6846E9250X183185340344deficient, composite
6851, 5, 141, 6854810147146146540145deficient, squarefree, semiprime, composite
6861, 2, 3, 6, 7, 12, 19, 1E, 36, 3X, 59, E6, 115, 22X, 343, 6861414009362E2E1X04X6abundant, semiperfect, squarefree, composite
6871, 687268816876876861deficient, squarefree, prime
6881, 2, 4, 8, E, 1X, 38, 74, X1, 182, 344, 6881011X37171124308380abundant, semiperfect, composite
6891, 3, 15, 17, 43, 49, 22E, 6898X003333333400289deficient, squarefree, sphenic, composite
68X1, 2, 5, X, 81, 142, 345, 68X81030562888828040Xdeficient, squarefree, sphenic, composite
68E1, 68E2690168E68E68X1deficient, squarefree, prime
6901, 2, 3, 4, 6, 9, 10, 16, 23, 30, 46, 69, 90, 116, 183, 230, 346, 690161584XE4517230460abundant, semiperfect, composite
6911, 7, E7, 6914794103102102590101deficient, squarefree, semiprime, composite
6921, 2, 347, 6924X2034X349349346348deficient, squarefree, semiprime, composite
6931, 3, 5, 11, 13, 21, 33, 55, 63, 143, 231, 6931010085351922340353deficient, composite
6941, 2, 4, 8, 14, 51, X2, 184, 348, 694X114266X5359340354deficient, composite
6951, 695269616956956941deficient, squarefree, prime
6961, 2, 3, 6, 117, 232, 349, 696811806X6120120230466abundant, semiperfect, squarefree, sphenic, composite
6971, E, 75, 697476085848461483deficient, squarefree, semiprime, composite
6981, 2, 4, 5, 7, X, 12, 18, 24, 2E, 41, 5X, 82, E8, 144, 185, 34X, 69816147699X121E240458abundant, semiperfect, composite
6991, 3, 9, 91, 233, 69969E23159497460239deficient, composite
69X1, 2, 34E, 69X4X3035235135134X350deficient, squarefree, semiprime, composite
69E1, 69E26X0169E69E69X1deficient, squarefree, prime
6X01, 2, 3, 4, 6, 8, 10, 20, 35, 6X, X3, 118, 186, 234, 350, 6X0141560X803X42228474abundant, semiperfect, composite
n Divisors d(n) σ(n) s(n) sopf(n) sopfr(n) φ(n) n−φ(n) Notes
6X11, 5, 145, 6X1483014E14X14X554149deficient, squarefree, semiprime, composite
6X21, 2, 15, 25, 2X, 4X, 351, 6X28E3044X404031438Xdeficient, squarefree, sphenic, composite
6X31, 3, 7, 19, 3E, E9, 235, 6X38X8039949493X0303deficient, squarefree, sphenic, composite
6X41, 2, 4, 11, 17, 22, 32, 44, 64, 187, 352, 6X41011746902X303003X4deficient, composite
6X51, 1E, 37, 6X5474057565665055deficient, squarefree, semiprime, composite
6X61, 2, 3, 5, 6, 9, X, E, 13, 16, 1X, 26, 29, 39, 47, 56, 76, 83, 92, 119, 146, 236, 353, 6X620176010761920180526abundant, semiperfect, composite
6X71, 6X726X816X76X76X61deficient, squarefree, prime
6X81, 2, 4, 8, 14, 27, 28, 52, X4, 188, 354, 6X81012007142935340368abundant, semiperfect, composite
6X91, 3, 237, 6X9492823E23X23X470239deficient, squarefree, semiprime, composite
6XX1, 2, 7, 12, 5E, EX, 355, 6XX8100051268682E03EXdeficient, squarefree, sphenic, composite
6XE1, 5, 147, 6XE484015115015056014Edeficient, squarefree, semiprime, composite
6E01, 2, 3, 4, 6, 10, 6E, 11X, 189, 238, 356, 6E01014409507476234478abundant, semiperfect, composite
6E11, 6E126E216E16E16E01deficient, squarefree, prime
6E21, 2, 357, 6E24X5035X359359356358deficient, squarefree, semiprime, composite
6E31, 3, 9, 23, 31, 93, 239, 6E38X68375343X460253deficient, composite
6E41, 2, 4, 5, 8, X, 18, 21, 34, 42, 84, X5, 148, 18X, 358, 6E4141430938719294420abundant, perfect power, semiperfect, composite
6E51, 7, E, 11, 65, 77, EE, 6E5894024727275001E5deficient, squarefree, sphenic, composite
6E61, 2, 3, 6, 11E, 23X, 359, 6E68120070612412423847Xabundant, semiperfect, squarefree, sphenic, composite
6E71, 15, 4E, 6E7476065646465463deficient, squarefree, semiprime, composite
6E81, 2, 4, 18E, 35X, 6E861030534191193358360deficient, composite
6E91, 3, 5, 13, 57, 149, 23E, 6E98E404436363380339deficient, squarefree, sphenic, composite
6EX1, 2, 35E, 6EX4X6036236136135X360deficient, squarefree, semiprime, composite
6EE1, 17, 45, 6EE47606160606605Edeficient, squarefree, semiprime, composite
7001, 2, 3, 4, 6, 7, 8, 9, 10, 12, 14, 16, 19, 20, 24, 30, 36, 40, 48, 53, 60, 70, 94, X6, 100, 120, 190, 240, 360, 700261X4813481019200500abundant, semiperfect, highly abundant, composite

## 701 to 800 Edit

n Divisors d(n) σ(n) s(n) sopf(n) sopfr(n) φ(n) n−φ(n) Notes
7011, 701270217017017001deficient, squarefree, prime
7021, 2, 5, X, 85, 14X, 361, 7028109058X909029442Xdeficient, squarefree, sphenic, composite
7031, 3, 241, 7034948245244244480243deficient, squarefree, semiprime, composite
7041, 2, 4, E, 1X, 1E, 38, 3X, 78, 191, 362, 7041012006E830323083E8deficient, composite
7051, 705270617057057041deficient, squarefree, prime
7061, 2, 3, 6, 11, 22, 33, 66, 121, 242, 363, 70610133082616272204X6abundant, semiperfect, composite
7071, 5, 7, 25, 2E, 101, 14E, 7078X002E53535480247deficient, squarefree, sphenic, composite
7081, 2, 4, 8, X7, 192, 364, 70881140634X9E1360368deficient, composite
7091, 3, 9, 95, 243, 7096X36329989E480249deficient, composite
70X1, 2, 365, 70X4X76368367367364366deficient, squarefree, semiprime, composite
70E1, 70E2710170E70E70X1deficient, squarefree, prime
7101, 2, 3, 4, 5, 6, X, 10, 13, 15, 18, 26, 2X, 43, 50, 58, 71, 86, 122, 150, 193, 244, 366, 71020190011E02325194538abundant, semiperfect, composite
7111, 711271217117117101deficient, squarefree, prime
7121, 2, 7, 12, 61, 102, 367, 7128104052X6X6X300412deficient, squarefree, sphenic, composite
7131, 3, E, 27, 29, 79, 245, 7138X8036939394202E3deficient, squarefree, sphenic, composite
7141, 2, 4, 8, 14, 28, 54, X8, 194, 368, 714E1227713218368368deficient, square, perfect power, composite
7151, 5, 21, 35, 151, 71569061E13X43568169deficient, composite
7161, 2, 3, 6, 9, 16, 17, 23, 32, 46, 49, 96, 123, 246, 369, 71614148096620262304X6abundant, semiperfect, composite
7171, 11, 67, 717479479787866077deficient, squarefree, semiprime, composite
7181, 2, 4, 195, 36X, 7186106654X197199368370deficient, composite
7191, 3, 7, 19, 41, 103, 247, 7198E143E7X20410309deficient, composite
71X1, 2, 5, X, 87, 152, 36E, 71X811005X292922X043Xdeficient, squarefree, sphenic, composite
71E1, 71E2720171E71E71X1deficient, squarefree, prime
7201, 2, 3, 4, 6, 8, 10, 20, 37, 72, X9, 124, 196, 248, 370, 720141640E2040442404X0abundant, semiperfect, composite
n Divisors d(n) σ(n) s(n) sopf(n) sopfr(n) φ(n) n−φ(n) Notes
7211, 721272217217217201deficient, squarefree, prime
7221, 2, E, 1X, 3E, 7X, 371, 7228100049X50503243EXdeficient, squarefree, sphenic, composite
7231, 3, 5, 9, 13, 1E, 39, 59, 97, 153, 249, 723101100599272X380363deficient, composite
7241, 2, 4, 7, 12, 24, 31, 62, 104, 197, 372, 7241012947703X40300424abundant, semiperfect, composite
7251, 15, 51, 725479067666668065deficient, squarefree, semiprime, composite
7261, 2, 3, 6, 125, 24X, 373, 7268126073612X12X24849Xabundant, semiperfect, squarefree, sphenic, composite
7271, 727272817277277261deficient, squarefree, prime
7281, 2, 4, 5, 8, X, 11, 14, 18, 22, 34, 44, 55, 68, 88, XX, 154, 198, 374, 728181610XX41822280468abundant, semiperfect, composite
7291, 3, 24E, 7294980253252252498251deficient, squarefree, semiprime, composite
72X1, 2, 375, 72X4XX6378377377374376deficient, squarefree, semiprime, composite
72E1, 7, 105, 72E484011111011062010Edeficient, squarefree, semiprime, composite
7301, 2, 3, 4, 6, 9, 10, 16, 25, 30, 4X, 73, 98, 126, 199, 250, 376, 7301616E6E862X332404E0abundant, semiperfect, composite
7311, 5, E, 17, 47, 7E, 155, 7318X0028E2E2E500231deficient, squarefree, sphenic, composite
7321, 2, 377, 7324XE037X379379376378deficient, squarefree, semiprime, composite
7331, 3, 251, 73349882552542544X0253deficient, squarefree, semiprime, composite
7341, 2, 4, 8, XE, 19X, 378, 73481190658E1E5374380deficient, composite
7351, 735273617357357341deficient, squarefree, prime
7361, 2, 3, 5, 6, 7, X, 12, 13, 19, 21, 26, 2E, 36, 42, 5X, 63, 89, 106, 127, 156, 252, 379, 7362018801146151X180576abundant, semiperfect, composite
7371, 737273817377377361deficient, squarefree, prime
7381, 2, 4, 19E, 37X, 738610X05641X11X3378380deficient, composite
7391, 3, 9, 11, 23, 33, 69, 99, 253, 739XE924551421460299deficient, composite
73X1, 2, 15, 27, 2X, 52, 37E, 73X8100048242423403EXdeficient, squarefree, sphenic, composite
73E1, 5, 157, 73E48X01611601605X015Edeficient, squarefree, semiprime, composite
7401, 2, 3, 4, 6, 8, E, 10, 14, 1X, 20, 28, 29, 38, 40, 56, 74, 80, E0, 128, 1X0, 254, 380, 74020190011801420228514abundant, semiperfect, composite
n Divisors d(n) σ(n) s(n) sopf(n) sopfr(n) φ(n) n−φ(n) Notes
7411, 7, 107, 7414854113112112630111deficient, squarefree, semiprime, composite
7421, 2, 1E, 3X, 381, 7426E6342121403623X0deficient, composite
7431, 3, 255, 74349X02592582584X8257deficient, squarefree, semiprime, composite
7441, 2, 4, 5, X, 18, 45, 8X, 158, 1X1, 382, 74410139084850522X8458abundant, semiperfect, composite
7451, 745274617457457441deficient, squarefree, prime
7461, 2, 3, 6, 9, 16, 4E, 9X, 129, 256, 383, 7461014308X654572504E6abundant, semiperfect, composite
7471, 747274817477477461deficient, squarefree, prime
7481, 2, 4, 7, 8, 12, 17, 24, 32, 48, 64, E1, 108, 1X2, 384, 7481414809342428300448abundant, semiperfect, composite
7491, 3, 5, 13, 5E, 159, 257, 7498100047367673X8361deficient, squarefree, sphenic, composite
74X1, 2, 11, 22, 35, 6X, 385, 74X810304X2484834040Xdeficient, squarefree, sphenic, composite
74E1, E, 81, 74E48209190906808Edeficient, squarefree, semiprime, composite
7501, 2, 3, 4, 6, 10, 75, 12X, 1X3, 258, 386, 750101560X107X802544E8abundant, semiperfect, composite
7511, 751275217517517501deficient, squarefree, prime
7521, 2, 5, X, 8E, 15X, 387, 7528116060X96962E445Xdeficient, squarefree, sphenic, composite
7531, 3, 7, 9, 15, 19, 43, 53, 9E, 109, 259, 7531011005692326400353deficient, composite
7541, 2, 4, 8, 14, 57, E2, 1X4, 388, 754X12787245963380394deficient, composite
7551, 25, 31, 75547E057565670055deficient, squarefree, semiprime, composite
7561, 2, 3, 6, 12E, 25X, 389, 756813007661341342584EXabundant, semiperfect, squarefree, sphenic, composite
7571, 5, 21, 37, 15E, 757695820140455X0177deficient, composite
7581, 2, 4, 1X5, 38X, 7586111657X1X71X9388390deficient, composite
7591, 3, 25E, 7594X002632622624E8261deficient, squarefree, semiprime, composite
75X1, 2, 7, E, 12, 1X, 41, 65, 82, 10X, 38E, 75X10123069218232E046Xdeficient, composite
75E1, 11, 6E, 75E48208180806X07Edeficient, squarefree, semiprime, composite
7601, 2, 3, 4, 5, 6, 8, 9, X, 10, 13, 16, 18, 20, 23, 26, 30, 34, 39, 46, 50, 60, 76, 90, X0, E3, 130, 160, 1X6, 260, 390, 7602821001560X18200560abundant, semiperfect, highly abundant, composite
n Divisors d(n) σ(n) s(n) sopf(n) sopfr(n) φ(n) n−φ(n) Notes
7611, 1E, 3E, 76148005E5X5X70459deficient, squarefree, semiprime, composite
7621, 2, 391, 7624E36394393393390392deficient, squarefree, semiprime, composite
7631, 3, 17, 49, 261, 7636X703091X35490293deficient, composite
7641, 2, 4, 1X7, 392, 764611285841X91XE390394deficient, composite
7651, 5, 7, 27, 2E, 10E, 161, 7658X803173737500265deficient, squarefree, sphenic, composite
7661, 2, 3, 6, 131, 262, 393, 76681320776136136260506abundant, semiperfect, squarefree, sphenic, composite
7671, 767276817677677661deficient, squarefree, prime
7681, 2, 4, 8, 14, 15, 28, 2X, 54, 58, E4, 1X8, 394, 7681213X683X1725368400abundant, semiperfect, composite
7691, 3, 9, E, 29, 83, X1, 263, 7699100145412244702E9deficient, square, perfect power, composite
76X1, 2, 5, X, 91, 162, 395, 76X81190622989830046Xdeficient, squarefree, sphenic, composite
76E1, 76E2770176E76E76X1deficient, squarefree, prime
7701, 2, 3, 4, 6, 7, 10, 11, 12, 19, 22, 24, 33, 36, 44, 66, 70, 77, 110, 132, 1X9, 264, 396, 77020199412242123200570abundant, semiperfect, composite
7711, 771277217717717701deficient, squarefree, prime
7721, 2, 397, 7724E5039X399399396398deficient, squarefree, semiprime, composite
7731, 3, 5, 13, 61, 163, 265, 773810404896969400373deficient, squarefree, sphenic, composite
7741, 2, 4, 8, E5, 1XX, 398, 77481246692E7EE3943X0deficient, composite
7751, 775277617757757741deficient, squarefree, prime
7761, 2, 3, 6, 9, 16, 51, X2, 133, 266, 399, 7761014969205659260516abundant, semiperfect, composite
7771, 7, 111, 7774894119118118660117deficient, squarefree, semiprime, composite
7781, 2, 4, 5, X, E, 18, 1X, 21, 38, 42, 47, 84, 92, 164, 1XE, 39X, 778161610X5416212944X4abundant, semiperfect, composite
7791, 3, 267, 7794X2826E26X26X510269deficient, squarefree, semiprime, composite
77X1, 2, 17, 25, 32, 4X, 39E, 77X810604X2424236041Xdeficient, squarefree, sphenic, composite
77E1, 77E2780177E77E77X1deficient, squarefree, prime
7801, 2, 3, 4, 6, 8, 10, 14, 1E, 20, 3X, 40, 59, 78, E6, 134, 1E0, 268, 3X0, 7801818801100242X254528abundant, semiperfect, composite
n Divisors d(n) σ(n) s(n) sopf(n) sopfr(n) φ(n) n−φ(n) Notes
7811, 5, 11, 15, 55, 71, 165, 7818X6029E2E2E540241deficient, squarefree, sphenic, composite
7821, 2, 7, 12, 67, 112, 3X1, 7828114057X7474330452deficient, squarefree, sphenic, composite
7831, 3, 9, 23, 35, X3, 269, 7838E803E93842500283deficient, composite
7841, 2, 4, 1E1, 3X2, 7846116259X1E31E53X03X4deficient, composite
7851, 785278617857857841deficient, squarefree, prime
7861, 2, 3, 5, 6, X, 13, 26, 31, 62, 93, 135, 166, 26X, 3X3, 786141700E363E3E200586abundant, semiperfect, squarefree, composite
7871, E, 85, 78748609594946E493deficient, squarefree, semiprime, composite
7881, 2, 4, 8, E7, 1E2, 3X4, 788812706X4E91013X03X8deficient, composite
7891, 3, 7, 19, 45, 113, 26E, 789810004335353440349deficient, squarefree, sphenic, composite
78X1, 2, 3X5, 78X4E763X83X73X73X43X6deficient, squarefree, semiprime, composite
78E1, 5, 167, 78E494017117017062016Edeficient, squarefree, semiprime, composite
7901, 2, 3, 4, 6, 9, 10, 16, 27, 30, 52, 79, X4, 136, 1E3, 270, 3X6, 79016182810583035260530abundant, semiperfect, composite
7911, 791279217917917901deficient, squarefree, prime
7921, 2, 11, 22, 37, 72, 3X7, 792810X050X4X4X360432deficient, squarefree, sphenic, composite
7931, 3, 271, 7934X48275274274520273deficient, squarefree, semiprime, composite
7941, 2, 4, 5, 7, 8, X, 12, 14, 18, 24, 28, 2E, 34, 48, 5X, 68, 94, E8, 114, 168, 1E4, 3X8, 7942019001128121X280514abundant, semiperfect, composite
7951, 17, 4E, 795484067666673065deficient, squarefree, semiprime, composite
7961, 2, 3, 6, E, 15, 1X, 29, 2X, 43, 56, 86, 137, 272, 3X9, 796141600X26292922856Xabundant, semiperfect, squarefree, composite
7971, 797279817977977961deficient, squarefree, prime
7981, 2, 4, 1E5, 3XX, 798611865XX1E71E93X83E0deficient, composite
7991, 3, 5, 9, 13, 21, 39, 63, X5, 169, 273, 799101210633819420379deficient, composite
79X1, 2, 3XE, 79X4E903E23E13E13XX3E0deficient, squarefree, semiprime, composite
79E1, 7, 1E, 41, 115, 79E6960181263165014Edeficient, composite
7X01, 2, 3, 4, 6, 8, 10, 20, 3E, 7X, E9, 138, 1E6, 274, 3E0, 7X014180010204448268534abundant, semiperfect, composite
n Divisors d(n) σ(n) s(n) sopf(n) sopfr(n) φ(n) n−φ(n) Notes
7X11, 7X127X217X17X17X01deficient, squarefree, prime
7X21, 2, 5, X, 95, 16X, 3E1, 7X28123064XX0X031448Xdeficient, squarefree, sphenic, composite
7X31, 3, 11, 25, 33, 73, 275, 7X38E803993939480323deficient, squarefree, sphenic, composite
7X41, 2, 4, 1E7, 3E2, 7X4611985E41E91EE3E03E4deficient, composite
7X51, E, 87, 7X5488097969671095deficient, squarefree, semiprime, composite
7X61, 2, 3, 6, 7, 9, 12, 16, 19, 23, 36, 46, 53, 69, X6, 116, 139, 276, 3E3, 7X618182010361019230576abundant, semiperfect, composite
7X71, 5, 16E, 7X74960175174174634173deficient, squarefree, semiprime, composite
7X81, 2, 4, 8, 14, 5E, EX, 1E8, 3E4, 7X8X136077461673X8400deficient, composite
7X91, 3, 277, 7X94X6827E27X27X530279deficient, squarefree, semiprime, composite
7XX1, 2, 3E5, 7XX4EX63E83E73E73E43E6deficient, squarefree, semiprime, composite
7XE1, 15, 57, 7XE48607170707406Edeficient, squarefree, semiprime, composite
7E01, 2, 3, 4, 5, 6, X, 10, 13, 17, 18, 26, 32, 49, 50, 64, 7E, 96, 13X, 170, 1E9, 278, 3E6, 7E0201E40135025272005E0abundant, semiperfect, composite
7E11, 7, 117, 7E14914123122122690121deficient, squarefree, semiprime, composite
7E21, 2, 3E7, 7E24EE03EX3E93E93E63E8deficient, squarefree, semiprime, composite
7E31, 3, 9, X7, 279, 7E36E68375XXE1530283deficient, composite
7E41, 2, 4, 8, E, 11, 1X, 22, 38, 44, 74, 88, EE, 1EX, 3E8, 7E41415609682226340474abundant, semiperfect, composite
7E51, 5, 171, 7E54970177176176640175deficient, squarefree, semiprime, composite
7E61, 2, 3, 6, 13E, 27X, 3E9, 7E68140080614414427853Xabundant, semiperfect, squarefree, sphenic, composite
7E71, 27, 31, 7E7485459585876057deficient, squarefree, semiprime, composite
7E81, 2, 4, 7, 12, 24, 35, 6X, 118, 1EE, 3EX, 7E81014408444244340478abundant, semiperfect, composite
7E91, 3, 27E, 7E94X80283282282538281deficient, squarefree, semiprime, composite
7EX1, 2, 5, X, 1E, 21, 3X, 42, 97, 172, 3EE, 7EX101360762262E3084E2deficient, composite
7EE1, 7EE280017EE7EE7EX1deficient, squarefree, prime
8001, 2, 3, 4, 6, 8, 9, 10, 14, 16, 20, 28, 30, 40, 54, 60, 80, X8, 100, 140, 200, 280, 400, 800201E031303518280540abundant, semiperfect, composite

## 801 to 900 Edit

n Divisors d(n) σ(n) s(n) sopf(n) sopfr(n) φ(n) n−φ(n) Notes
8011, 801280218018018001deficient, squarefree, prime
8021, 2, 401, 80241006404403403400402deficient, squarefree, semiprime, composite
8031, 3, 5, 7, E, 13, 19, 29, 2E, 47, 65, 89, 119, 173, 281, 8031414007E92222340483deficient, squarefree, composite
8041, 2, 4, 15, 2X, 58, 201, 402, 804912E16X91732394430deficient, square, perfect power, composite
8051, 11, 75, 805489087868674085deficient, squarefree, semiprime, composite
8061, 2, 3, 6, 141, 282, 403, 80681420816146146280546abundant, semiperfect, squarefree, sphenic, composite
8071, 17, 51, 807487469686876067deficient, squarefree, semiprime, composite
8081, 2, 4, 5, 8, X, 18, 25, 34, 4X, 98, 101, 174, 202, 404, 808141690X8430343144E4abundant, semiperfect, composite
8091, 3, 9, 23, 37, X9, 283, 8098102841E3X44530299deficient, composite
80X1, 2, 7, 12, 6E, 11X, 405, 80X812005E2787835047Xdeficient, squarefree, sphenic, composite
80E1, 80E2810180E80E80X1deficient, squarefree, prime
8101, 2, 3, 4, 6, 10, 81, 142, 203, 284, 406, 810101708XE88688280550abundant, semiperfect, composite
8111, 5, 175, 811499017E17X17X654179deficient, squarefree, semiprime, composite
8121, 2, E, 1X, 45, 8X, 407, 8128116054X565637445Xdeficient, squarefree, sphenic, composite
8131, 3, 285, 8134XX0289288288548287deficient, squarefree, semiprime, composite
8141, 2, 4, 8, 14, 61, 102, 204, 408, 814X13E279X6369400414deficient, composite
8151, 7, 11E, 81549401271261266E0125deficient, squarefree, semiprime, composite
8161, 2, 3, 5, 6, 9, X, 11, 13, 16, 22, 26, 33, 39, 55, 66, 76, 99, XX, 143, 176, 286, 409, 816201X9012761E22200616abundant, semiperfect, composite
8171, 817281818178178161deficient, squarefree, prime
8181, 2, 4, 205, 40X, 8186123661X207209408410deficient, composite
8191, 3, 15, 1E, 43, 59, 287, 819810003X337374X8331deficient, squarefree, sphenic, composite
81X1, 2, 40E, 81X4103041241141140X410deficient, squarefree, semiprime, composite
81E1, 5, 21, 3E, 177, 81E6X402214449648193deficient, composite
8201, 2, 3, 4, 6, 7, 8, 10, 12, 19, 20, 24, 36, 41, 48, 70, 82, 103, 120, 144, 206, 288, 410, 820201E901370101E2405X0abundant, semiperfect, composite
n Divisors d(n) σ(n) s(n) sopf(n) sopfr(n) φ(n) n−φ(n) Notes
8211, E, 8E, 82149009E9X9X74499deficient, squarefree, semiprime, composite
8221, 2, 17, 27, 32, 52, 411, 8228114051X4444390452deficient, squarefree, sphenic, composite
8231, 3, 9, XE, 289, 8236EE0389E2E5550293deficient, composite
8241, 2, 4, 5, X, 18, 4E, 9X, 178, 207, 412, 82410156093856583284E8abundant, semiperfect, composite
8251, 825282618258258241deficient, squarefree, prime
8261, 2, 3, 6, 145, 28X, 413, 8268146083614X14X28855Xabundant, semiperfect, squarefree, sphenic, composite
8271, 7, 11, 77, 121, 8276X201E51829660187deficient, composite
8281, 2, 4, 8, 14, 28, 31, 62, 104, 208, 414, 82810147684X333E400428abundant, semiperfect, primitive abundant, composite
8291, 3, 5, 13, 67, 179, 28E, 8298114051373734403X9deficient, squarefree, sphenic, composite
82X1, 2, 415, 82X41046418417417414416deficient, squarefree, semiprime, composite
82E1, 82E2830182E82E82X1deficient, squarefree, prime
8301, 2, 3, 4, 6, 9, E, 10, 16, 1X, 23, 29, 30, 38, 46, 56, 83, 90, E0, 146, 209, 290, 416, 830201E4013101420260590abundant, semiperfect, composite
8311, 25, 35, 83148905E5X5X79459deficient, squarefree, semiprime, composite
8321, 2, 5, 7, X, 12, 15, 2X, 2E, 5X, 71, 9E, 122, 17X, 417, 83214160098X2727280572abundant, semiperfect, squarefree, composite
8331, 3, 291, 8334E08295294294560293deficient, squarefree, semiprime, composite
8341, 2, 4, 8, 105, 20X, 418, 8348137674210710E414420deficient, composite
8351, 835283618358358341deficient, squarefree, prime
8361, 2, 3, 6, 147, 292, 419, 83681480846150150290566abundant, semiperfect, squarefree, sphenic, composite
8371, 5, 17E, 8374X00185184184674183deficient, squarefree, semiprime, composite
8381, 2, 4, 11, 1E, 22, 3X, 44, 78, 20E, 41X, 8381014408043234380478deficient, composite
8391, 3, 7, 9, 17, 19, 49, 53, E1, 123, 293, 8391012546172528460399deficient, composite
83X1, 2, 41E, 83X4106042242142141X420deficient, squarefree, semiprime, composite
83E1, E, 91, 83E4920X1X0X07609Edeficient, squarefree, semiprime, composite
8401, 2, 3, 4, 5, 6, 8, X, 10, 13, 14, 18, 20, 21, 26, 34, 40, 42, 50, 63, 68, 84, X0, 106, 148, 180, 210, 294, 420, 8402622841644X19228614abundant, semiperfect, highly abundant, composite
n Divisors d(n) σ(n) s(n) sopf(n) sopfr(n) φ(n) n−φ(n) Notes
8411, 841284218418418401deficient, squarefree, prime
8421, 2, 421, 84241066424423423420422deficient, squarefree, semiprime, composite
8431, 3, 295, 8434E20299298298568297deficient, squarefree, semiprime, composite
8441, 2, 4, 7, 12, 24, 37, 72, 124, 211, 422, 84410151489044463604X4abundant, semiperfect, composite
8451, 5, 181, 8454X10187186186680185deficient, squarefree, semiprime, composite
8461, 2, 3, 6, 9, 16, 57, E2, 149, 296, 423, 846101650X066063290576abundant, semiperfect, composite
8471, 15, 5E, 847490075747479473deficient, squarefree, semiprime, composite
8481, 2, 4, 8, 107, 212, 424, 848813X0754109111420428deficient, composite
8491, 3, 11, 27, 33, 79, 297, 849810544073E3E500349deficient, squarefree, sphenic, composite
84X1, 2, 5, X, E, 1X, 47, 92, X1, 182, 425, 84X1014768281625308542deficient, composite
84E1, 7, 125, 84E498013113013072012Edeficient, squarefree, semiprime, composite
8501, 2, 3, 4, 6, 10, 85, 14X, 213, 298, 426, 8501017X0E508X90294578abundant, semiperfect, composite
8511, 851285218518518501deficient, squarefree, prime
8521, 2, 427, 8524108042X429429426428deficient, squarefree, semiprime, composite
8531, 3, 5, 9, 13, 23, 39, 69, E3, 183, 299, 8531013206898184603E3deficient, composite
8541, 2, 4, 8, 14, 17, 28, 32, 54, 64, 108, 214, 428, 8541215789241927400454abundant, semiperfect, composite
8551, 855285618558558541deficient, squarefree, prime
8561, 2, 3, 6, 7, 12, 19, 25, 36, 4X, 73, 126, 14E, 29X, 429, 856141800E663535240616abundant, semiperfect, squarefree, composite
8571, 1E, 45, 85749006564647E463deficient, squarefree, semiprime, composite
8581, 2, 4, 5, X, 18, 51, X2, 184, 215, 42X, 858101610974585X340518abundant, semiperfect, composite
8591, 3, E, 29, 31, 93, 29E, 859810804234343500359deficient, squarefree, sphenic, composite
85X1, 2, 11, 22, 3E, 7X, 42E, 85X8120056252523X047Xdeficient, squarefree, sphenic, composite
85E1, 85E2860185E85E85X1deficient, squarefree, prime
8601, 2, 3, 4, 6, 8, 9, 10, 15, 16, 20, 2X, 30, 43, 58, 60, 86, E4, 109, 150, 216, 2X0, 430, 86020204613X61X252805X0abundant, semiperfect, composite
n Divisors d(n) σ(n) s(n) sopf(n) sopfr(n) φ(n) n−φ(n) Notes
8611, 5, 7, 21, 2E, 41, 127, 185, 8619103339210205X0281deficient, square, perfect power, composite
8621, 2, 431, 86241096434433433430432deficient, squarefree, semiprime, composite
8631, 3, 2X1, 8634E482X52X42X45802X3deficient, squarefree, semiprime, composite
8641, 2, 4, 217, 432, 864612E865421921E430434deficient, composite
8651, 865286618658658641deficient, squarefree, prime
8661, 2, 3, 5, 6, X, 13, 26, 35, 6X, X3, 151, 186, 2X2, 433, 8661419001056434322863Xabundant, semiperfect, squarefree, composite
8671, 867286818678678661deficient, squarefree, prime
8681, 2, 4, 7, 8, E, 12, 14, 1X, 24, 38, 48, 65, 74, 94, 10X, 128, 218, 434, 86818188010141822340528abundant, semiperfect, composite
8691, 3, 9, E5, 2X3, 869610563X9E8EE5802X9deficient, composite
86X1, 2, 435, 86X410X6438437437434436deficient, squarefree, semiprime, composite
86E1, 5, 11, 17, 55, 7E, 187, 86E8E80311313160026Edeficient, squarefree, sphenic, composite
8701, 2, 3, 4, 6, 10, 87, 152, 219, 2X4, 436, 870101828E7890922X0590abundant, semiperfect, composite
8711, 871287218718718701deficient, squarefree, prime
8721, 2, 437, 872410E043X439439436438deficient, squarefree, semiprime, composite
8731, 3, 7, 19, 4E, 129, 2X5, 8738114048959594X0393deficient, squarefree, sphenic, composite
8741, 2, 4, 5, 8, X, 18, 27, 34, 52, X4, 10E, 188, 21X, 438, 874141800E483236340534abundant, semiperfect, composite
8751, 15, 61, 875493077767680075deficient, squarefree, semiprime, composite
8761, 2, 3, 6, 9, 16, 1E, 23, 3X, 46, 59, E6, 153, 2X6, 439, 876141800E46242X2905X6abundant, semiperfect, composite
8771, E, 95, 8774960X5X4X4794X3deficient, squarefree, semiprime, composite
8781, 2, 4, 21E, 43X, 87861320664221223438440deficient, composite
8791, 3, 5, 13, 6E, 189, 2X7, 879812005437777468411deficient, squarefree, sphenic, composite
87X1, 2, 7, 12, 75, 12X, 43E, 87X8130064282823804EXdeficient, squarefree, sphenic, composite
87E1, 25, 37, 87E49206160608205Edeficient, squarefree, semiprime, composite
8801, 2, 3, 4, 6, 8, 10, 11, 14, 20, 22, 28, 33, 40, 44, 66, 80, 88, 110, 154, 220, 2X8, 440, 88020206013X01622280600abundant, semiperfect, composite
n Divisors d(n) σ(n) s(n) sopf(n) sopfr(n) φ(n) n−φ(n) Notes
8811, 881288218818818801deficient, squarefree, prime
8821, 2, 5, X, 21, 42, X5, 18X, 441, 882X143377171X358526deficient, composite
8831, 3, 9, E7, 2X9, 883610783E5EX1015902E3deficient, composite
8841, 2, 4, 221, 442, 8846133266X223225440444deficient, composite
8851, 7, 12E, 8854X00137136136750135deficient, squarefree, semiprime, composite
8861, 2, 3, 6, E, 17, 1X, 29, 32, 49, 56, 96, 155, 2XX, 443, 886141800E362E2E260626abundant, semiperfect, squarefree, composite
8871, 5, 18E, 8874X601951941946E4193deficient, squarefree, semiprime, composite
8881, 2, 4, 8, 111, 222, 444, 8888145678X113117440448deficient, composite
8891, 3, 2XE, 8894E802E32E22E25982E1deficient, squarefree, semiprime, composite
88X1, 2, 15, 2X, 31, 62, 445, 88X81230562484840048Xdeficient, squarefree, sphenic, composite
88E1, 88E2890188E88E88X1deficient, squarefree, prime
8901, 2, 3, 4, 5, 6, 7, 9, X, 10, 12, 13, 16, 18, 19, 24, 26, 2E, 30, 36, 39, 50, 53, 5X, 70, 76, 89, X6, E8, 130, 156, 190, 223, 2E0, 446, 8903026401970151X200690abundant, semiperfect, highly composite, highly abundant, composite
8911, 11, 81, 891496493929280091deficient, squarefree, semiprime, composite
8921, 2, 447, 8924112044X449449446448deficient, squarefree, semiprime, composite
8931, 3, 2E1, 8934E882E52E42E45X02E3deficient, squarefree, semiprime, composite
8941, 2, 4, 8, 14, 67, 112, 224, 448, 894X15288546973440454deficient, composite
8951, 5, E, 1E, 47, 97, 191, 895810003273333614281deficient, squarefree, sphenic, composite
8961, 2, 3, 6, 157, 2E2, 449, 896815808X61601602E05X6abundant, semiperfect, squarefree, sphenic, composite
8971, 7, 131, 8974X14139138138760137deficient, squarefree, semiprime, composite
8981, 2, 4, 225, 44X, 8986135667X227229448450deficient, composite
8991, 3, 9, 23, 3E, E9, 2E3, 899811404634248590309deficient, composite
89X1, 2, 5, X, X7, 192, 44E, 89X81400722E2E236053Xdeficient, squarefree, sphenic, composite
89E1, 27, 35, 89E49406160608405Edeficient, squarefree, semiprime, composite
8X01, 2, 3, 4, 6, 8, 10, 20, 45, 8X, 113, 158, 226, 2E4, 450, 8X0141X6011804X522X85E4abundant, semiperfect, composite
n Divisors d(n) σ(n) s(n) sopf(n) sopfr(n) φ(n) n−φ(n) Notes
8X11, 17, 57, 8X1495473727283071deficient, squarefree, semiprime, composite
8X21, 2, 7, 11, 12, 22, 41, 77, 82, 132, 451, 8X21014767941X25360542deficient, composite
8X31, 3, 5, 13, 15, 21, 43, 63, 71, 193, 2E5, 8X3101360679212645444Edeficient, composite
8X41, 2, 4, E, 1X, 25, 38, 4X, 98, 227, 452, 8X410156087836383X84E8deficient, composite
8X51, 8X528X618X58X58X41deficient, squarefree, prime
8X61, 2, 3, 6, 9, 16, 5E, EX, 159, 2E6, 453, 8X6101760X7664672E05E6abundant, semiperfect, composite
8X71, 8X728X818X78X78X61deficient, squarefree, prime
8X81, 2, 4, 5, 8, X, 14, 18, 28, 34, 54, 68, X8, 114, 194, 228, 454, 8X8161936104X719368540abundant, semiperfect, composite
8X91, 3, 7, 19, 51, 133, 2E7, 8X9811944X75E5E5003X9deficient, squarefree, sphenic, composite
8XX1, 2, 455, 8XX41146458457457454456deficient, squarefree, semiprime, composite
8XE1, 8XE28E018XE8XE8XX1deficient, squarefree, prime
8E01, 2, 3, 4, 6, 10, 8E, 15X, 229, 2E8, 456, 8E0101900101094962E45E8abundant, semiperfect, composite
8E11, 5, 195, 8E14X9019E19X19X714199deficient, squarefree, semiprime, composite
8E21, 2, 457, 8E24115045X459459456458deficient, squarefree, semiprime, composite
8E31, 3, 9, E, 11, 29, 33, 83, 99, EE, 2E9, 8E310132062923265003E3deficient, composite
8E41, 2, 4, 7, 8, 12, 1E, 24, 3X, 48, 78, 115, 134, 22X, 458, 8E4141800E082830380534abundant, semiperfect, composite
8E51, 8E528E618E58E58E41deficient, squarefree, prime
8E61, 2, 3, 5, 6, X, 13, 26, 37, 72, X9, 15E, 196, 2EX, 459, 8E6141X0011064545240676abundant, semiperfect, squarefree, composite
8E71, 8E728E818E78E78E61deficient, squarefree, prime
8E81, 2, 4, 15, 17, 2X, 32, 58, 64, 22E, 45X, 8E810156086432344004E8deficient, composite
8E91, 3, 2EE, 8E9410003033023025E8301deficient, squarefree, semiprime, composite
8EX1, 2, 45E, 8EX4116046246146145X460deficient, squarefree, semiprime, composite
8EE1, 5, 7, 2E, 31, 135, 197, 8EE8108038141416002EEdeficient, squarefree, sphenic, composite
9001, 2, 3, 4, 6, 8, 9, 10, 14, 16, 20, 23, 30, 40, 46, 60, 69, 90, 100, 116, 160, 230, 300, 460, 9002122071507518300600abundant, square, perfect power, semiperfect, composite

## 901 to X00 Edit

n Divisors d(n) σ(n) s(n) sopf(n) sopfr(n) φ(n) n−φ(n) Notes
9011, 901290219019019001deficient, squarefree, prime
9021, 2, E, 1X, 4E, 9X, 461, 902813005EX60604044EXdeficient, squarefree, sphenic, composite
9031, 3, 301, 90341008305304304600303deficient, squarefree, semiprime, composite
9041, 2, 4, 5, X, 11, 18, 21, 22, 42, 44, 55, 84, XX, 198, 231, 462, 904161912100X1823340584abundant, semiperfect, composite
9051, 905290619059059041deficient, squarefree, prime
9061, 2, 3, 6, 7, 12, 19, 27, 36, 52, 79, 136, 161, 302, 463, 90614194010363737260666abundant, semiperfect, squarefree, composite
9071, 907290819079079061deficient, squarefree, prime
9081, 2, 4, 8, 117, 232, 464, 90881510804119121460468deficient, composite
9091, 3, 5, 9, 13, 25, 39, 73, 101, 199, 303, 9091014307233134480449deficient, composite
90X1, 2, 465, 90X41176468467467464466deficient, squarefree, semiprime, composite
90E1, 90E2910190E90E90X1deficient, squarefree, prime
9101, 2, 3, 4, 6, 10, 91, 162, 233, 304, 466, 91010194810389698300610abundant, semiperfect, composite
9111, 7, E, 15, 65, 9E, 137, 911810002XE2E2E680251deficient, squarefree, sphenic, composite
9121, 2, 5, X, XE, 19X, 467, 9128146074XE6E637455Xdeficient, squarefree, sphenic, composite
9131, 3, 17, 1E, 49, 59, 305, 913811404293939560373deficient, squarefree, sphenic, composite
9141, 2, 4, 8, 14, 28, 35, 6X, 118, 234, 468, 9141016469323743454480abundant, semiperfect, primitive abundant, composite
9151, 11, 85, 91549E097969684095deficient, squarefree, semiprime, composite
9161, 2, 3, 6, 9, 16, 61, 102, 163, 306, 469, 916101806XE06669300616abundant, semiperfect, composite
9171, 5, 19E, 9174E001X51X41X47341X3deficient, squarefree, semiprime, composite
9181, 2, 4, 7, 12, 24, 3E, 7X, 138, 235, 46X, 918101680964484X3X0538abundant, semiperfect, composite
9191, 3, 307, 9194102830E30X30X610309deficient, squarefree, semiprime, composite
91X1, 2, 46E, 91X4119047247147146X470deficient, squarefree, semiprime, composite
91E1, 91E2920191E91E91X1deficient, squarefree, prime
9201, 2, 3, 4, 5, 6, 8, X, E, 10, 13, 18, 1X, 20, 26, 29, 34, 38, 47, 50, 56, 74, 92, X0, E0, 119, 164, 1X0, 236, 308, 470, 92028260018X019212286E4abundant, semiperfect, composite
n Divisors d(n) σ(n) s(n) sopf(n) sopfr(n) φ(n) n−φ(n) Notes
9211, 921292219219219201deficient, squarefree, prime
9221, 2, 471, 92241196474473473470472deficient, squarefree, semiprime, composite
9231, 3, 7, 9, 19, 23, 41, 53, 103, 139, 309, 9231013X0679X1E5303E3deficient, composite
9241, 2, 4, 237, 472, 924614186E423923E470474deficient, composite
9251, 5, 21, 45, 1X1, 9256E762514X537281E9deficient, composite
9261, 2, 3, 6, 11, 15, 22, 2X, 33, 43, 66, 86, 165, 30X, 473, 926141900E962E2E280666abundant, semiperfect, squarefree, composite
9271, 927292819279279261deficient, squarefree, prime
9281, 2, 4, 8, 14, 6E, 11X, 238, 474, 928X16108X47177468480deficient, composite
9291, 3, 30E, 92941040313312312618311deficient, squarefree, semiprime, composite
92X1, 2, 5, 7, X, 12, 17, 2E, 32, 5X, 7E, E1, 13X, 1X2, 475, 92X141800X92292930062Xabundant, semiperfect, squarefree, composite
92E1, E, X1, 92E4X20E1E2984XX1deficient, perfect power, composite
9301, 2, 3, 4, 6, 9, 10, 16, 30, 31, 62, 93, 104, 166, 239, 310, 476, 9301620021292363E300630abundant, semiperfect, composite
9311, 27, 37, 931499463626289061deficient, squarefree, semiprime, composite
9321, 2, 1E, 25, 3X, 4X, 477, 9328130058X46464344EXdeficient, squarefree, sphenic, composite
9331, 3, 5, 13, 75, 1X3, 311, 9338130058981814X8447deficient, squarefree, sphenic, composite
9341, 2, 4, 8, 11E, 23X, 478, 93481560828121125474480deficient, composite
9351, 7, 13E, 9354X801471461467E0145deficient, squarefree, semiprime, composite
9361, 2, 3, 6, 167, 312, 479, 93681680946170170310626abundant, semiperfect, squarefree, sphenic, composite
9371, 11, 87, 9374X1499989886097deficient, squarefree, semiprime, composite
9381, 2, 4, 5, X, 18, 57, E2, 1X4, 23E, 47X, 9381017X0X646264380578abundant, semiperfect, composite
9391, 3, 9, 105, 313, 9396116642910810E620319deficient, composite
93X1, 2, E, 1X, 51, X2, 47E, 93X81360622626242051Xdeficient, squarefree, sphenic, composite
93E1, 15, 67, 93E4X008180808807Edeficient, squarefree, semiprime, composite
9401, 2, 3, 4, 6, 7, 8, 10, 12, 14, 19, 20, 24, 28, 36, 40, 48, 54, 70, 80, 94, 120, 140, 168, 240, 314, 480, 94024242816X8101X280680abundant, semiperfect, composite
n Divisors d(n) σ(n) s(n) sopf(n) sopfr(n) φ(n) n−φ(n) Notes
9411, 5, 1X5, 9414E301XE1XX1XX7541X9deficient, squarefree, semiprime, composite
9421, 2, 481, 94241206484483483480482deficient, squarefree, semiprime, composite
9431, 3, 315, 94341060319318318628317deficient, squarefree, semiprime, composite
9441, 2, 4, 241, 482, 9446145270X243245480484deficient, composite
9451, 17, 5E, 9454X0077767689075deficient, squarefree, semiprime, composite
9461, 2, 3, 5, 6, 9, X, 13, 16, 21, 23, 26, 39, 42, 46, 63, 76, E3, 106, 169, 1X6, 316, 483, 9462021X01456X192606X6abundant, semiperfect, composite
9471, 7, 141, 9474X94149148148800147deficient, squarefree, semiprime, composite
9481, 2, 4, 8, 11, 22, 44, 88, 121, 242, 484, 9481017099811328440508abundant, semiperfect, composite
9491, 3, E, 29, 35, X3, 317, 9498120047347475683X1deficient, squarefree, sphenic, composite
94X1, 2, 485, 94X41216488487487484486deficient, squarefree, semiprime, composite
94E1, 5, 1X7, 94E4E401E11E01E07601XEdeficient, squarefree, semiprime, composite
9501, 2, 3, 4, 6, 10, 95, 16X, 243, 318, 486, 950101X2010909XX0314638abundant, semiperfect, composite
9511, 1E, 4E, 9514X006E6X6X8X469deficient, squarefree, semiprime, composite
9521, 2, 7, 12, 81, 142, 487, 952814406XX8X8X400552deficient, squarefree, sphenic, composite
9531, 3, 9, 107, 319, 9536118843510X111630323deficient, composite
9541, 2, 4, 5, 8, X, 14, 15, 18, 2X, 34, 58, 68, 71, E4, 122, 1X8, 244, 488, 954181E30119820263685X8abundant, semiperfect, composite
9551, 955295619559559541deficient, squarefree, prime
9561, 2, 3, 6, 16E, 31X, 489, 9568170096617417431863Xabundant, semiperfect, squarefree, sphenic, composite
9571, 25, 3E, 9574X006564648E463deficient, squarefree, semiprime, composite
9581, 2, 4, E, 1X, 27, 38, 52, X4, 245, 48X, 958101680924383X420538deficient, composite
9591, 3, 5, 7, 11, 13, 19, 2E, 33, 55, 77, 89, 143, 1X9, 31E, 9591416809232424400559deficient, squarefree, composite
95X1, 2, 48E, 95X4123049249149148X490deficient, squarefree, semiprime, composite
95E1, 95E2960195E95E95X1deficient, squarefree, prime
9601, 2, 3, 4, 6, 8, 9, 10, 16, 17, 20, 30, 32, 49, 60, 64, 96, 108, 123, 170, 246, 320, 490, 96020231015702027300660abundant, semiperfect, composite
n Divisors d(n) σ(n) s(n) sopf(n) sopfr(n) φ(n) n−φ(n) Notes
9611, 31, 961399332316293031deficient, square, perfect power, semiprime, composite
9621, 2, 5, X, E5, 1XX, 491, 9628153078X10010039458Xdeficient, squarefree, sphenic, composite
9631, 3, 321, 96341088325324324640323deficient, squarefree, semiprime, composite
9641, 2, 4, 7, 12, 24, 41, 82, 144, 247, 492, 9641017549E0921410554abundant, semiperfect, composite
9651, 965296619659659641deficient, squarefree, prime
9661, 2, 3, 6, 171, 322, 493, 96681720976176176320646abundant, semiperfect, squarefree, sphenic, composite
9671, 5, E, 21, 47, X5, 1XE, 9678110035514226E4273deficient, composite
9681, 2, 4, 8, 14, 28, 37, 72, 124, 248, 494, 96810173098439454804X8abundant, semiperfect, primitive abundant, composite
9691, 3, 9, 15, 23, 43, 69, 109, 323, 969X13165691825600369deficient, composite
96X1, 2, 11, 22, 45, 8X, 495, 96X81390622585844052Xdeficient, squarefree, sphenic, composite
96E1, 7, 145, 96E4E0015115015082014Edeficient, squarefree, semiprime, composite
9701, 2, 3, 4, 5, 6, X, 10, 13, 18, 1E, 26, 3X, 50, 59, 78, 97, E6, 172, 1E0, 249, 324, 496, 9702024001650292E254718abundant, semiperfect, composite
9711, 971297219719719701deficient, squarefree, prime
9721, 2, 497, 9724125049X499499496498deficient, squarefree, semiprime, composite
9731, 3, 325, 973410X0329328328648327deficient, squarefree, semiprime, composite
9741, 2, 4, 8, 125, 24X, 498, 9748161686212712E4944X0deficient, composite
9751, 5, 1E1, 9754E701E71E61E67801E5deficient, squarefree, semiprime, composite
9761, 2, 3, 6, 7, 9, E, 12, 16, 19, 1X, 29, 36, 53, 56, 65, 83, X6, 10X, 146, 173, 326, 499, 97620220014461E22260716abundant, semiperfect, composite
9771, 17, 61, 9774X3479787890077deficient, squarefree, semiprime, composite
9781, 2, 4, 24E, 49X, 978614E07342512534984X0deficient, composite
9791, 3, 327, 979410X832E32X32X650329deficient, squarefree, semiprime, composite
97X1, 2, 5, X, E7, 1E2, 49E, 97X815607X21021023X059Xdeficient, squarefree, sphenic, composite
97E1, 11, 8E, 97E4X60X1X0X08X09Edeficient, squarefree, semiprime, composite
9801, 2, 3, 4, 6, 8, 10, 14, 20, 25, 40, 4X, 73, 98, 126, 174, 250, 328, 4X0, 9801821X014202X34314668abundant, semiperfect, composite
n Divisors d(n) σ(n) s(n) sopf(n) sopfr(n) φ(n) n−φ(n) Notes
9811, 7, 147, 9814E14153152152830151deficient, squarefree, semiprime, composite
9821, 2, 15, 2X, 35, 6X, 4X1, 9828139060X505045452Xdeficient, squarefree, sphenic, composite
9831, 3, 5, 9, 13, 27, 39, 79, 10E, 1E3, 329, 9831015407793336500483deficient, composite
9841, 2, 4, 251, 4X2, 9846150273X2532554X04X4deficient, composite
9851, E, X7, 9854X80E7E6E6890E5deficient, squarefree, semiprime, composite
9861, 2, 3, 6, 175, 32X, 4X3, 9868176099617X17X32865Xabundant, semiperfect, squarefree, sphenic, composite
9871, 987298819879879861deficient, squarefree, prime
9881, 2, 4, 5, 7, 8, X, 12, 18, 21, 24, 2E, 34, 42, 48, 5X, 84, E8, 127, 148, 1E4, 252, 4X4, 9882021X01414121E340648abundant, semiperfect, composite
9891, 3, 32E, 98941100333332332658331deficient, squarefree, semiprime, composite
98X1, 2, 4X5, 98X412764X84X74X74X44X6deficient, squarefree, semiprime, composite
98E1, 1E, 51, 98E4X407170709206Edeficient, squarefree, semiprime, composite
9901, 2, 3, 4, 6, 9, 10, 11, 16, 22, 23, 30, 33, 44, 46, 66, 90, 99, 110, 176, 253, 330, 4X6, 99020232815581622300690abundant, semiperfect, composite
9911, 5, 1E5, 9914E901EE1EX1EX7941E9deficient, squarefree, semiprime, composite
9921, 2, 17, 31, 32, 62, 4X7, 992813X060X4X4X460532deficient, squarefree, sphenic, composite
9931, 3, 7, 19, 57, 149, 331, 993813145416565560433deficient, squarefree, sphenic, composite
9941, 2, 4, 8, E, 14, 1X, 28, 38, 54, 74, X8, 128, 254, 4X8, 994141930E581121454540abundant, semiperfect, composite
9951, 995299619959959941deficient, squarefree, prime
9961, 2, 3, 5, 6, X, 13, 26, 3E, 7X, E9, 177, 1E6, 332, 4X9, 9961420001226494926872Xabundant, semiperfect, squarefree, composite
9971, 15, 6E, 9974X6085848491483deficient, squarefree, semiprime, composite
9981, 2, 4, 255, 4XX, 9986152674X2572594X84E0deficient, composite
9991, 3, 9, 111, 333, 99961232455114117660339deficient, composite
99X1, 2, 7, 12, 85, 14X, 4XE, 99X81500722929242057Xdeficient, squarefree, sphenic, composite
99E1, 5, 1E7, 99E4EX02012002007X01EEdeficient, squarefree, semiprime, composite
9X01, 2, 3, 4, 6, 8, 10, 20, 4E, 9X, 129, 178, 256, 334, 4E0, 9X014210013205458328674abundant, semiperfect, composite
n Divisors d(n) σ(n) s(n) sopf(n) sopfr(n) φ(n) n−φ(n) Notes
9X11, 11, 91, 9X14X84X3X2X2900X1deficient, squarefree, semiprime, composite
9X21, 2, 4E1, 9X2412964E44E34E34E04E2deficient, squarefree, semiprime, composite
9X31, 3, E, 29, 37, X9, 335, 9X38128049949495X0403deficient, squarefree, sphenic, composite
9X41, 2, 4, 5, X, 18, 5E, EX, 1E8, 257, 4E2, 9X4101900E1866683X85E8abundant, semiperfect, composite
9X51, 7, 25, 41, 14E, 9X56EX62013037820185deficient, composite
9X61, 2, 3, 6, 9, 16, 67, 112, 179, 336, 4E3, 9X6101980E967073330676abundant, semiperfect, composite
9X71, 9X729X819X79X79X61deficient, squarefree, prime
9X81, 2, 4, 8, 14, 75, 12X, 258, 4E4, 9X8X174695X77814X8500deficient, composite
9X91, 3, 5, 13, 17, 21, 49, 63, 7E, 1E9, 337, 9X910152873E23285004X9deficient, composite
9XX1, 2, 1E, 27, 3X, 52, 4E5, 9XX81400612484847053Xdeficient, squarefree, sphenic, composite
9XE1, 9XE29E019XE9XE9XX1deficient, squarefree, prime
9E01, 2, 3, 4, 6, 7, 10, 12, 15, 19, 24, 2X, 36, 43, 58, 70, 86, 9E, 150, 17X, 259, 338, 4E6, 9E020240016102527280730abundant, semiperfect, composite
9E11, 9E129E219E19E19E01deficient, squarefree, prime
9E21, 2, 5, X, E, 11, 1X, 22, 47, 55, 92, XX, EE, 1EX, 4E7, 9E2141900E0X2727340672abundant, semiperfect, primitive abundant, squarefree, composite
9E31, 3, 9, 23, 45, 113, 339, 9E3813005094852660353deficient, composite
9E41, 2, 4, 8, 12E, 25X, 4E8, 9E4816908981311354E4500deficient, composite
9E51, 9E529E619E59E59E41deficient, squarefree, prime
9E61, 2, 3, 6, 17E, 33X, 4E9, 9E681800X0618418433867Xabundant, semiperfect, squarefree, sphenic, composite
9E71, 5, 7, 2E, 35, 151, 1EE, 9E7812004054545680337deficient, squarefree, sphenic, composite
9E81, 2, 4, 25E, 4EX, 9E8615607642612634E8500deficient, composite
9E91, 3, 33E, 9E941140343342342678341deficient, squarefree, semiprime, composite
9EX1, 2, 4EE, 9EX413005025015014EX500deficient, squarefree, semiprime, composite
9EE1, 9EE2X0019EE9EE9EX1deficient, squarefree, prime
X001, 2, 3, 4, 5, 6, 8, 9, X, 10, 13, 14, 16, 18, 20, 26, 28, 30, 34, 39, 40, 50, 60, 68, 76, 80, X0, 100, 114, 130, 180, 200, 260, 340, 500, X00302X162016X19280740abundant, semiperfect, highly abundant, composite

## X01 to E00 Edit

n Divisors d(n) σ(n) s(n) sopf(n) sopfr(n) φ(n) n−φ(n) Notes
X011, E, XE, X014E00EEEXEX904E9deficient, squarefree, semiprime, composite
X021, 2, 7, 12, 87, 152, 501, X028154073X9494430592deficient, squarefree, sphenic, composite
X031, 3, 11, 31, 33, 93, 341, X03812944914545600403deficient, squarefree, sphenic, composite
X041, 2, 4, 17, 32, 64, 261, 502, X049166385E1936490534deficient, square, perfect power, composite
X051, 5, 15, 71, 201, X05610962911X33768259deficient, composite
X061, 2, 3, 6, 181, 342, 503, X0681820X16186186340686abundant, semiperfect, squarefree, sphenic, composite
X071, X072X081X07X07X061deficient, squarefree, prime
X081, 2, 4, 8, 131, 262, 504, X08816E68XX133137500508deficient, composite
X091, 3, 7, 9, 19, 1E, 53, 59, 115, 153, 343, X091015407332930560469deficient, composite
X0X1, 2, 5, X, 21, 25, 42, 4X, 101, 202, 505, X0X10174693830353X8622deficient, composite
X0E1, X0E2X101X0EX0EX0X1deficient, squarefree, prime
X101, 2, 3, 4, 6, E, 10, 1X, 29, 38, 56, X1, E0, 182, 263, 344, 506, X101621X413941425308704abundant, semiperfect, composite
X111, X112X121X11X11X101deficient, squarefree, prime
X121, 2, 507, X124132050X509509506508deficient, squarefree, semiprime, composite
X131, 3, 5, 13, 81, 203, 345, X13814406298989540493deficient, squarefree, sphenic, composite
X141, 2, 4, 7, 8, 11, 12, 14, 22, 24, 44, 48, 77, 88, 94, 132, 154, 264, 508, X1418201412001X24400614abundant, semiperfect, composite
X151, 27, 3E, X154X8067666697065deficient, squarefree, semiprime, composite
X161, 2, 3, 6, 9, 16, 23, 46, 69, 116, 183, 346, 509, X16121X931079518346690abundant, semiperfect, composite
X171, X172X181X17X17X161deficient, squarefree, prime
X181, 2, 4, 5, X, 18, 61, 102, 204, 265, 50X, X18101970E54686X400618abundant, semiperfect, composite
X191, 3, 347, X194116834E34X34X690349deficient, squarefree, semiprime, composite
X1X1, 2, 15, 2X, 37, 72, 50E, X1X81460642525248055Xdeficient, squarefree, sphenic, composite
X1E1, 7, E, 17, 65, E1, 155, X1E81140321313176027Edeficient, squarefree, sphenic, composite
X201, 2, 3, 4, 6, 8, 10, 20, 51, X2, 133, 184, 266, 348, 510, X201421X01380565X3406X0abundant, semiperfect, composite
n Divisors d(n) σ(n) s(n) sopf(n) sopfr(n) φ(n) n−φ(n) Notes
X211, 5, 205, X214103020E20X20X814209deficient, squarefree, semiprime, composite
X221, 2, 511, X2241336514513513510512deficient, squarefree, semiprime, composite
X231, 3, 9, 117, 349, X236129847511X121690353deficient, composite
X241, 2, 4, 267, 512, X24615X878426926E510514deficient, composite
X251, 11, 95, X254E10X7X6X6940X5deficient, squarefree, semiprime, composite
X261, 2, 3, 5, 6, 7, X, 12, 13, 19, 26, 2E, 36, 41, 5X, 82, 89, 103, 156, 185, 206, 34X, 513, X26202460163615202407X6abundant, semiperfect, composite
X271, X272X281X27X27X261deficient, squarefree, prime
X281, 2, 4, 8, 14, 1E, 28, 3X, 54, 78, 134, 268, 514, X28121920XE4212E4X8540abundant, semiperfect, composite
X291, 3, 34E, X2941180353352352698351deficient, squarefree, semiprime, composite
X2X1, 2, E, 1X, 57, E2, 515, X2X81500692686847057Xdeficient, squarefree, sphenic, composite
X2E1, 5, 21, 4E, 207, X2E610E02815459808223deficient, composite
X301, 2, 3, 4, 6, 9, 10, 16, 30, 35, 6X, X3, 118, 186, 269, 350, 516, X3016226614363X433406E0abundant, semiperfect, composite
X311, 7, 157, X314E94163162162890161deficient, squarefree, semiprime, composite
X321, 2, 517, X324135051X519519516518deficient, squarefree, semiprime, composite
X331, 3, 15, 25, 43, 73, 351, X33813004894141628407deficient, squarefree, sphenic, composite
X341, 2, 4, 5, 8, X, 18, 31, 34, 62, 104, 135, 208, 26X, 518, X34141E9011583840400634abundant, semiperfect, composite
X351, X352X361X35X35X341deficient, squarefree, prime
X361, 2, 3, 6, 11, 17, 22, 32, 33, 49, 66, 96, 187, 352, 519, X36141E4011063131300736abundant, semiperfect, squarefree, composite
X371, X372X381X37X37X361deficient, squarefree, prime
X381, 2, 4, 7, 12, 24, 45, 8X, 158, 26E, 51X, X38101900X8452544405E8abundant, semiperfect, composite
X391, 3, 5, 9, E, 13, 23, 29, 39, 47, 83, E3, 119, 209, 353, X391418009831721500539deficient, composite
X3X1, 2, 51E, X3X4136052252152151X520deficient, squarefree, semiprime, composite
X3E1, X3E2X401X3EX3EX3X1deficient, squarefree, prime
X401, 2, 3, 4, 6, 8, 10, 14, 20, 27, 40, 52, 79, X4, 136, 188, 270, 354, 520, X4018236815283036340700abundant, semiperfect, composite
n Divisors d(n) σ(n) s(n) sopf(n) sopfr(n) φ(n) n−φ(n) Notes
X411, X412X421X41X41X401deficient, squarefree, prime
X421, 2, 5, X, 105, 20X, 521, X428169084X11011041462Xdeficient, squarefree, sphenic, composite
X431, 3, 7, 19, 5E, 159, 355, X438140057969695X0463deficient, squarefree, sphenic, composite
X441, 2, 4, 271, 522, X446162279X273275520524deficient, composite
X451, X452X461X45X45X441deficient, squarefree, prime
X461, 2, 3, 6, 9, 16, 6E, 11X, 189, 356, 523, X46101X90104674773506E6abundant, semiperfect, composite
X471, 5, 11, 1E, 55, 97, 20E, X47812003753535740307deficient, squarefree, sphenic, composite
X481, 2, 4, 8, E, 15, 1X, 2X, 38, 58, 74, E4, 137, 272, 524, X48141X601014262X4545E4abundant, semiperfect, composite
X491, 3, 357, X49411X835E35X35X6E0359deficient, squarefree, semiprime, composite
X4X1, 2, 7, 12, 8E, 15X, 525, X4X8160077298984505EXdeficient, squarefree, sphenic, composite
X4E1, X4E2X501X4EX4EX4X1deficient, squarefree, prime
X501, 2, 3, 4, 5, 6, X, 10, 13, 18, 21, 26, 42, 50, 63, 84, X5, 106, 18X, 210, 273, 358, 526, X5020264017E0X1X294778abundant, semiperfect, composite
X511, 17, 67, X514E1483828299081deficient, squarefree, semiprime, composite
X521, 2, 527, X524138052X529529526528deficient, squarefree, semiprime, composite
X531, 3, 9, 11E, 359, X53613204891221256E0363deficient, composite
X541, 2, 4, 8, 14, 28, 3E, 7X, 138, 274, 528, X54101900X684149514540abundant, semiperfect, primitive abundant, composite
X551, 5, 7, 2E, 37, 15E, 211, X55812804274747700355deficient, squarefree, sphenic, composite
X561, 2, 3, 6, 18E, 35X, 529, X5681900X661941943586EXabundant, semiperfect, squarefree, sphenic, composite
X571, E, E5, X574E60105104104954103deficient, squarefree, semiprime, composite
X581, 2, 4, 11, 22, 25, 44, 4X, 98, 275, 52X, X581018509E4383X480598deficient, composite
X591, 3, 35E, X59412003633623626E8361deficient, squarefree, semiprime, composite
X5X1, 2, 5, X, 107, 212, 52E, X5X8170086211211242063Xdeficient, squarefree, sphenic, composite
X5E1, X5E2X601X5EX5EX5X1deficient, squarefree, prime
X601, 2, 3, 4, 6, 7, 8, 9, 10, 12, 16, 19, 20, 23, 24, 30, 36, 46, 48, 53, 60, 70, 90, X6, 120, 139, 160, 190, 276, 360, 530, X602829401XX0101X300760abundant, semiperfect, composite
n Divisors d(n) σ(n) s(n) sopf(n) sopfr(n) φ(n) n−φ(n) Notes
X611, 15, 75, X614E308E8X8X99489deficient, squarefree, semiprime, composite
X621, 2, 531, X6241396534533533530532deficient, squarefree, semiprime, composite
X631, 3, 5, 13, 85, 213, 361, X638150065991915684E7deficient, squarefree, sphenic, composite
X641, 2, 4, 277, 532, X64616587E427927E530534deficient, composite
X651, 31, 35, X654E10676666X0065deficient, squarefree, semiprime, composite
X661, 2, 3, 6, E, 1X, 1E, 29, 3X, 56, 59, E6, 191, 362, 533, X661420001156333330875Xabundant, semiperfect, squarefree, composite
X671, 7, 27, 41, 161, X67610802153239890197deficient, composite
X681, 2, 4, 5, 8, X, 14, 17, 18, 32, 34, 64, 68, 7E, 108, 13X, 214, 278, 534, X681821X013342228400668abundant, semiperfect, composite
X691, 3, 9, 11, 33, 99, 121, 363, X69914635E61428660409deficient, square, perfect power, composite
X6X1, 2, 535, X6X413X6538537537534536deficient, squarefree, semiprime, composite
X6E1, X6E2X701X6EX6EX6X1deficient, squarefree, prime
X701, 2, 3, 4, 6, 10, X7, 192, 279, 364, 536, X701020X81238E0E2360710abundant, semiperfect, composite
X711, 5, 21, 51, 215, X7161142291565E840231deficient, composite
X721, 2, 7, 12, 91, 162, 537, X728164078X9X9X460612deficient, squarefree, sphenic, composite
X731, 3, 365, X7341220369368368708367deficient, squarefree, semiprime, composite
X741, 2, 4, 8, 13E, 27X, 538, X7481800948141145534540deficient, composite
X751, E, E7, X754E80107106106970105deficient, squarefree, semiprime, composite
X761, 2, 3, 5, 6, 9, X, 13, 15, 16, 26, 2X, 39, 43, 71, 76, 86, 109, 122, 193, 216, 366, 539, X76202530167623262807E6abundant, semiperfect, composite
X771, X772X781X77X77X761deficient, squarefree, prime
X781, 2, 4, 27E, 53X, X7861680804281283538540deficient, composite
X791, 3, 7, 19, 61, 163, 367, X79814545976E6E600479deficient, squarefree, sphenic, composite
X7X1, 2, 11, 22, 4E, 9X, 53E, X7X815606X262624X059Xdeficient, squarefree, sphenic, composite
X7E1, 5, 217, X7E410X022122022086021Edeficient, squarefree, semiprime, composite
X801, 2, 3, 4, 6, 8, 10, 14, 20, 28, 40, 54, 80, X8, 140, 194, 280, 368, 540, X801824501590519368714abundant, semiperfect, composite
n Divisors d(n) σ(n) s(n) sopf(n) sopfr(n) φ(n) n−φ(n) Notes
X811, 25, 45, X814E306E6X6XX1469deficient, squarefree, semiprime, composite
X821, 2, 541, X8241406544543543540542deficient, squarefree, semiprime, composite
X831, 3, 9, 17, 23, 49, 69, 123, 369, X83X14986151X276903E3deficient, composite
X841, 2, 4, 5, 7, X, E, 12, 18, 1X, 24, 2E, 38, 47, 5X, 65, 92, E8, 10X, 164, 218, 281, 542, X8420240015382123340744abundant, semiperfect, composite
X851, 1E, 57, X854E40777676X1075deficient, squarefree, semiprime, composite
X861, 2, 3, 6, 195, 36X, 543, X8681960X9619X19X36871Xabundant, semiperfect, squarefree, sphenic, composite
X871, X872X881X87X87X861deficient, squarefree, prime
X881, 2, 4, 8, 141, 282, 544, X888182695X143147540548deficient, composite
X891, 3, 5, 13, 87, 219, 36E, X89815406739393580509deficient, squarefree, sphenic, composite
X8X1, 2, 545, X8X41416548547547544546deficient, squarefree, semiprime, composite
X8E1, 7, 11, 15, 77, 9E, 165, X8E81200331313180028Edeficient, squarefree, sphenic, composite
X901, 2, 3, 4, 6, 9, 10, 16, 30, 37, 72, X9, 124, 196, 283, 370, 546, X9016239815084045360730abundant, semiperfect, composite
X911, X912X921X91X91X901deficient, squarefree, prime
X921, 2, 5, X, 21, 27, 42, 52, 10E, 21X, 547, X921018809XX3237420672deficient, composite
X931, 3, E, 29, 3E, E9, 371, X93814005295151648447deficient, squarefree, sphenic, composite
X941, 2, 4, 8, 14, 81, 142, 284, 548, X94X1912X3X8389540554deficient, composite
X951, X952X961X95X95X941deficient, squarefree, prime
X961, 2, 3, 6, 7, 12, 19, 31, 36, 62, 93, 166, 197, 372, 549, X9614214012664141300796abundant, semiperfect, squarefree, composite
X971, 5, 21E, X9741100225224224874223deficient, squarefree, semiprime, composite
X981, 2, 4, 285, 54X, X98616E681X287289548550deficient, composite
X991, 3, 9, 125, 373, X99613864X912812E720379deficient, composite
X9X1, 2, 17, 32, 35, 6X, 54E, X9X81560682525250059Xdeficient, squarefree, sphenic, composite
X9E1, X9E2XX01X9EX9EX9X1deficient, squarefree, prime
XX01, 2, 3, 4, 5, 6, 8, X, 10, 11, 13, 18, 20, 22, 26, 33, 34, 44, 50, 55, 66, 88, X0, XX, 110, 143, 198, 220, 286, 374, 550, XX0282E0020201E23280820abundant, semiperfect, highly abundant, composite
n Divisors d(n) σ(n) s(n) sopf(n) sopfr(n) φ(n) n−φ(n) Notes
XX11, 7, 167, XX141054173172172930171deficient, squarefree, semiprime, composite
XX21, 2, E, 1X, 5E, EX, 551, XX28160071X70704X45EXdeficient, squarefree, sphenic, composite
XX31, 3, 375, XX341260379378378728377deficient, squarefree, semiprime, composite
XX41, 2, 4, 15, 1E, 2X, 3X, 58, 78, 287, 552, XX4101900X1836384X85E8deficient, composite
XX51, 5, 221, XX541110227226226880225deficient, squarefree, semiprime, composite
XX61, 2, 3, 6, 9, 16, 23, 25, 46, 4X, 73, 126, 199, 376, 553, XX614210012162X34360746abundant, semiperfect, composite
XX71, XX72XX81XX7XX7XX61deficient, squarefree, prime
XX81, 2, 4, 7, 8, 12, 14, 24, 28, 41, 48, 82, 94, 144, 168, 288, 554, XX81620E31207920480628abundant, semiperfect, composite
XX91, 3, 377, XX94126837E37X37X730379deficient, squarefree, semiprime, composite
XXX1, 2, 5, X, 111, 222, 555, XXX817908X211811844066Xdeficient, squarefree, sphenic, composite
XXE1, XXE2XE01XXEXXEXXX1deficient, squarefree, prime
XE01, 2, 3, 4, 6, 10, XE, 19X, 289, 378, 556, XE01021801290E4E6374738abundant, semiperfect, composite
XE11, E, 11, X1, EE, XE1610E2201202E920191deficient, composite
XE21, 2, 557, XE24145055X559559556558deficient, squarefree, semiprime, composite
XE31, 3, 5, 7, 9, 13, 19, 21, 2E, 39, 53, 63, 89, 127, 169, 223, 379, XE3161X48E55131E5005E3abundant, semiperfect, primitive abundant, composite
XE41, 2, 4, 8, 145, 28X, 558, XE48187698214714E554560deficient, composite
XE51, 17, 6E, XE54E80878686X3085deficient, squarefree, semiprime, composite
XE61, 2, 3, 6, 19E, 37X, 559, XE681X00E061X41X437873Xabundant, semiperfect, squarefree, sphenic, composite
XE71, XE72XE81XE7XE7XE61deficient, squarefree, prime
XE81, 2, 4, 5, X, 18, 67, 112, 224, 28E, 55X, XE8101E4010447274440678abundant, semiperfect, composite
XE91, 3, 15, 27, 43, 79, 37E, XE9814005034343680439deficient, squarefree, sphenic, composite
XEX1, 2, 7, 12, 95, 16X, 55E, XEX81700802X2X248063Xdeficient, squarefree, sphenic, composite
XEE1, XEE2E001XEEXEEXEX1deficient, squarefree, prime
E001, 2, 3, 4, 6, 8, 9, E, 10, 14, 16, 1X, 20, 29, 30, 38, 40, 56, 60, 74, 83, E0, 100, 128, 146, 1X0, 290, 380, 560, E002629701X701421340780abundant, semiperfect, composite

## E01 to 1000 Edit

n Divisors d(n) σ(n) s(n) sopf(n) sopfr(n) φ(n) n−φ(n) Notes
E011, 5, 225, E014113022E22X22X894229deficient, squarefree, semiprime, composite
E021, 2, 11, 22, 51, X2, 561, E028161070X6464500602deficient, squarefree, sphenic, composite
E031, 3, 1E, 59, 381, E036134444122417043EEdeficient, composite
E041, 2, 4, 291, 562, E046174283X293295560564deficient, composite
E051, 7, 16E, E0541080177176176950175deficient, squarefree, semiprime, composite
E061, 2, 3, 5, 6, X, 13, 26, 45, 8X, 113, 1X1, 226, 382, 563, E0614230013E653532X881Xabundant, semiperfect, squarefree, composite
E071, 31, 37, E074E74696868X6067deficient, squarefree, semiprime, composite
E081, 2, 4, 8, 147, 292, 564, E08818X0994149151560568deficient, composite
E091, 3, 9, 23, 4E, 129, 383, E09814805735258730399deficient, composite
E0X1, 2, 565, E0X41476568567567564566deficient, squarefree, semiprime, composite
E0E1, 5, E, 25, 47, 101, 227, E0E813003E13939794337deficient, squarefree, sphenic, composite
E101, 2, 3, 4, 6, 7, 10, 12, 17, 19, 24, 32, 36, 49, 64, 70, 96, E1, 170, 1X2, 293, 384, 566, E1020271418042729300810abundant, semiperfect, composite
E111, E112E121E11E11E101deficient, squarefree, prime
E121, 2, 15, 2X, 3E, 7X, 567, E12816006XX56565145EXdeficient, squarefree, sphenic, composite
E131, 3, 11, 33, 35, X3, 385, E13814405294949680453deficient, squarefree, sphenic, composite
E141, 2, 4, 5, 8, X, 14, 18, 21, 28, 34, 42, 54, 68, 84, 114, 148, 228, 294, 568, E14192341142971X454680abundant, square, perfect power, semiperfect, composite
E151, E152E161E15E15E141deficient, squarefree, prime
E161, 2, 3, 6, 9, 16, 75, 12X, 1X3, 386, 569, E1610204611307X81380756abundant, semiperfect, composite
E171, 7, 171, E1741094179178178960177deficient, squarefree, semiprime, composite
E181, 2, 4, 295, 56X, E186176684X297299568570deficient, composite
E191, 3, 5, 13, 8E, 229, 387, E19816006X397975X8531deficient, squarefree, sphenic, composite
E1X1, 2, E, 1X, 61, 102, 56E, E1X81660742727250061Xdeficient, squarefree, sphenic, composite
E1E1, E1E2E201E1EE1EE1X1deficient, squarefree, prime
E201, 2, 3, 4, 6, 8, 10, 20, 57, E2, 149, 1X4, 296, 388, 570, E2014244015206064380760abundant, semiperfect, composite
n Divisors d(n) σ(n) s(n) sopf(n) sopfr(n) φ(n) n−φ(n) Notes
E211, E212E221E21E21E201deficient, squarefree, prime
E221, 2, 5, 7, X, 12, 1E, 2E, 3X, 5X, 97, 115, 172, 22X, 571, E22142000109X3131380762abundant, semiperfect, squarefree, composite
E231, 3, 9, 12E, 389, E2361430509132135750393deficient, composite
E241, 2, 4, 11, 22, 27, 44, 52, X4, 297, 572, E24101994X703X40500624deficient, composite
E251, E252E261E25E25E241deficient, squarefree, prime
E261, 2, 3, 6, 1X5, 38X, 573, E2681X60E361XX1XX38875Xabundant, semiperfect, squarefree, sphenic, composite
E271, 5, 15, 17, 71, 7E, 22E, E27813003953535800327deficient, squarefree, sphenic, composite
E281, 2, 4, 8, 14, 85, 14X, 298, 574, E28X19E6X8X8791568580deficient, composite
E291, 3, 7, E, 19, 29, 41, 65, 103, 173, 38E, E2910170079319245X0549deficient, composite
E2X1, 2, 575, E2X414X6578577577574576deficient, squarefree, semiprime, composite
E2E1, E2E2E301E2EE2EE2X1deficient, squarefree, prime
E301, 2, 3, 4, 5, 6, 9, X, 10, 13, 16, 18, 23, 26, 30, 39, 46, 50, 69, 76, 90, E3, 116, 130, 1X6, 230, 299, 390, 576, E30262E362006X19300830abundant, semiperfect, highly abundant, composite
E311, E312E321E31E31E301deficient, squarefree, prime
E321, 2, 577, E32414E057X579579576578deficient, squarefree, semiprime, composite
E331, 3, 391, E3341308395394394760393deficient, squarefree, semiprime, composite
E341, 2, 4, 7, 8, 12, 24, 25, 48, 4X, 98, 14E, 174, 29X, 578, E3414210011883236480674abundant, semiperfect, composite
E351, 5, 11, 21, 55, X5, 231, E35813203X716248402E5deficient, composite
E361, 2, 3, 6, 1X7, 392, 579, E3681X80E461E01E0390766abundant, semiperfect, squarefree, sphenic, composite
E371, E372E381E37E37E361deficient, squarefree, prime
E381, 2, 4, E, 1X, 31, 38, 62, 104, 29E, 57X, E38101X20XX44244500638deficient, composite
E391, 3, 9, 131, 393, E3961452515134137760399deficient, composite
E3X1, 2, 5, X, 117, 232, 57E, E3X8186092212212246069Xdeficient, squarefree, sphenic, composite
E3E1, 7, 175, E3E4110018118018098017Edeficient, squarefree, semiprime, composite
E401, 2, 3, 4, 6, 8, 10, 14, 15, 20, 28, 2X, 40, 43, 58, 80, 86, E4, 150, 1X8, 2X0, 394, 580, E4020276018201X26368794abundant, semiperfect, composite
n Divisors d(n) σ(n) s(n) sopf(n) sopfr(n) φ(n) n−φ(n) Notes
E411, 1E, 5E, E41410007E7X7XX8479deficient, squarefree, semiprime, composite
E421, 2, 17, 32, 37, 72, 581, E42816406EX5454530612deficient, squarefree, sphenic, composite
E431, 3, 5, 13, 91, 233, 395, E43816406E99999600543deficient, squarefree, sphenic, composite
E441, 2, 4, 2X1, 582, E44617E286X2X32X5580584deficient, composite
E451, E452E461E45E45E441deficient, squarefree, prime
E461, 2, 3, 6, 7, 9, 11, 12, 16, 19, 22, 33, 36, 53, 66, 77, 99, X6, 132, 176, 1X9, 396, 583, E4620264016E62124300846abundant, semiperfect, composite
E471, E, 105, E4741060115114114X34113deficient, squarefree, semiprime, composite
E481, 2, 4, 5, 8, X, 18, 34, 35, 6X, 118, 151, 234, 2X2, 584, E4814223012X440444546E4abundant, semiperfect, composite
E491, 3, 397, E494132839E39X39X770399deficient, squarefree, semiprime, composite
E4X1, 2, 585, E4X41516588587587584586deficient, squarefree, semiprime, composite
E4E1, 27, 45, E4E41000717070XX06Edeficient, squarefree, semiprime, composite
E501, 2, 3, 4, 6, 10, E5, 1XX, 2X3, 398, 586, E501022X01350EX100394778abundant, semiperfect, composite
E511, 5, 7, 2E, 3E, 177, 235, E518140046E4E4E780391deficient, squarefree, sphenic, composite
E521, 2, 587, E524152058X589589586588deficient, squarefree, semiprime, composite
E531, 3, 9, 23, 51, 133, 399, E5381528595545X7603E3deficient, composite
E541, 2, 4, 8, 14, 87, 152, 2X4, 588, E54X1X48XE48993580594deficient, composite
E551, 15, 81, E5541030979696X8095deficient, squarefree, semiprime, composite
E561, 2, 3, 5, 6, X, E, 13, 1X, 21, 26, 29, 42, 47, 56, 63, 92, 106, 119, 1XE, 236, 39X, 589, E5620270017661922294882abundant, semiperfect, composite
E571, 11, X7, E5741054E9E8E8X60E7deficient, squarefree, semiprime, composite
E581, 2, 4, 7, 12, 24, 4E, 9X, 178, 2X5, 58X, E58101E40EX4585X4X0678abundant, semiperfect, composite
E591, 3, 17, 25, 49, 73, 39E, E59814805234343700459deficient, squarefree, sphenic, composite
E5X1, 2, 58E, E5X4153059259159158X590deficient, squarefree, semiprime, composite
E5E1, 5, 237, E5E411X024124024092023Edeficient, squarefree, semiprime, composite
E601, 2, 3, 4, 6, 8, 9, 10, 16, 1E, 20, 30, 3X, 59, 60, 78, E6, 134, 153, 1E0, 2X6, 3X0, 590, E602028601900242E3807X0abundant, semiperfect, composite
n Divisors d(n) σ(n) s(n) sopf(n) sopfr(n) φ(n) n−φ(n) Notes
E611, E612E621E61E61E601deficient, squarefree, prime
E621, 2, 591, E6241536594593593590592deficient, squarefree, semiprime, composite
E631, 3, 7, 19, 67, 179, 3X1, E63815946317575660503deficient, squarefree, sphenic, composite
E641, 2, 4, 5, X, 18, 6E, 11X, 238, 2X7, 592, E6410206010E876784686E8abundant, semiperfect, composite
E651, E, 107, E6541080117116116X50115deficient, squarefree, semiprime, composite
E661, 2, 3, 6, 1E1, 3X2, 593, E6681E20E761E61E63X0786abundant, semiperfect, squarefree, sphenic, composite
E671, E672E681E67E67E661deficient, squarefree, prime
E681, 2, 4, 8, 11, 14, 22, 28, 44, 54, 88, X8, 154, 2X8, 594, E68142096112X1323540628abundant, semiperfect, composite
E691, 3, 5, 9, 13, 31, 39, 93, 135, 239, 3X3, E691018709033940600569deficient, composite
E6X1, 2, 7, 12, 15, 2X, 41, 82, 9E, 17X, 595, E6X10194699822294806XXdeficient, composite
E6E1, E6E2E701E6EE6EE6X1deficient, squarefree, prime
E701, 2, 3, 4, 6, 10, E7, 1E2, 2X9, 3X4, 596, E7010232813781001023X0790abundant, semiperfect, composite
E711, E712E721E71E71E701deficient, squarefree, prime
E721, 2, 5, X, 11E, 23X, 597, E728190094X1261264746EXdeficient, squarefree, sphenic, composite
E731, 3, 3X5, E73413603X93X83X87883X7deficient, squarefree, semiprime, composite
E741, 2, 4, 8, E, 17, 1X, 32, 38, 64, 74, 108, 155, 2XX, 598, E7414210011482830500674abundant, semiperfect, composite
E751, 7, 17E, E75411401871861869E0185deficient, squarefree, semiprime, composite
E761, 2, 3, 6, 9, 16, 23, 27, 46, 52, 79, 136, 1E3, 3X6, 599, E76142280130630363907X6abundant, semiperfect, composite
E771, 5, 21, 57, 23E, E77612783016065920257deficient, composite
E781, 2, 4, 2XE, 59X, E78618508942E12E35985X0deficient, composite
E791, 3, 11, 33, 37, X9, 3X7, E79815145574E4E700479deficient, squarefree, sphenic, composite
E7X1, 2, 59E, E7X415605X25X15X159X5X0deficient, squarefree, semiprime, composite
E7E1, 1E, 61, E7E41040818080E007Edeficient, squarefree, semiprime, composite
E801, 2, 3, 4, 5, 6, 7, 8, X, 10, 12, 13, 14, 18, 19, 20, 24, 26, 2E, 34, 36, 40, 48, 50, 5X, 68, 70, 89, 94, X0, E8, 120, 156, 180, 1E4, 240, 2E0, 3X8, 5X0, E803435402580151E280900abundant, semiperfect, highly composite, highly abundant, composite
n Divisors d(n) σ(n) s(n) sopf(n) sopfr(n) φ(n) n−φ(n) Notes
E811, 35, E813EE736356XE4835deficient, square, perfect power, semiprime, composite
E821, 2, 25, 4X, 5X1, E82616196572750578606deficient, composite
E831, 3, 9, E, 15, 29, 43, 83, 109, 137, 3X9, E83101760799272X680503deficient, composite
E841, 2, 4, 2E1, 5X2, E846186289X2E32E55X05X4deficient, composite
E851, 5, 241, E8541210247246246940245deficient, squarefree, semiprime, composite
E861, 2, 3, 6, 1E5, 3XX, 5X3, E8681E60E961EX1EX3X879Xabundant, semiperfect, squarefree, sphenic, composite
E871, 7, 181, E8741154189188188X00187deficient, squarefree, semiprime, composite
E881, 2, 4, 8, 157, 2E2, 5X4, E8881X10X441591615X05X8deficient, composite
E891, 3, 3XE, E89413803E33E23E27983E1deficient, squarefree, semiprime, composite
E8X1, 2, 5, X, 11, 22, 55, XX, 121, 242, 5X5, E8X101XX6E18182944074Xdeficient, composite
E8E1, 17, 75, E8E41060919090E008Edeficient, squarefree, semiprime, composite
E901, 2, 3, 4, 6, 9, 10, 16, 30, 3E, 7X, E9, 138, 1E6, 2E3, 3E0, 5X6, E90162640167044493X07E0abundant, semiperfect, composite
E911, E912E921E91E91E901deficient, squarefree, prime
E921, 2, 7, E, 12, 1X, 65, X1, 10X, 182, 5X7, E92101X20X4X1827470722deficient, composite
E931, 3, 5, 13, 95, 243, 3E1, E9381700729X1X1628567deficient, squarefree, sphenic, composite
E941, 2, 4, 8, 14, 28, 45, 8X, 158, 2E4, 5X8, E94101E76EX24753594600abundant, semiperfect, primitive abundant, composite
E951, E952E961E95E95E941deficient, squarefree, prime
E961, 2, 3, 6, 1E7, 3E2, 5X9, E9681E80EX62002003E07X6abundant, semiperfect, squarefree, sphenic, composite
E971, E972E981E97E97E961deficient, squarefree, prime
E981, 2, 4, 5, X, 15, 18, 21, 2X, 42, 58, 71, 84, 122, 244, 2E5, 5XX, E98162316133X2027454744abundant, semiperfect, composite
E991, 3, 7, 9, 19, 23, 53, 69, 139, 183, 3E3, E9910182884EX1X690509deficient, composite
E9X1, 2, 1E, 31, 3X, 62, 5XE, E9X81700722525256063Xdeficient, squarefree, sphenic, composite
E9E1, 11, XE, E9E410X0101100100XX0EEdeficient, squarefree, semiprime, composite
EX01, 2, 3, 4, 6, 8, 10, 20, 5E, EX, 159, 1E8, 2E6, 3E4, 5E0, EX0142600162064683X87E4abundant, semiperfect, composite
n Divisors d(n) σ(n) s(n) sopf(n) sopfr(n) φ(n) n−φ(n) Notes
EX11, 5, E, 27, 47, 10E, 245, EX18140041E3E3E840361deficient, squarefree, sphenic, composite
EX21, 2, 5E1, EX2415965E45E35E35E05E2deficient, squarefree, semiprime, composite
EX31, 3, 3E5, EX3413X03E93E83E87X83E7deficient, squarefree, semiprime, composite
EX41, 2, 4, 7, 12, 24, 51, X2, 184, 2E7, 5E2, EX410201410305X605006X4abundant, semiperfect, composite
EX51, EX52EX61EX5EX5EX41deficient, squarefree, prime
EX61, 2, 3, 5, 6, 9, X, 13, 16, 17, 26, 32, 39, 49, 76, 7E, 96, 123, 13X, 1E9, 246, 3E6, 5E3, EX6202860187625283008X6abundant, semiperfect, composite
EX71, 25, 4E, EX741060757474E3473deficient, squarefree, semiprime, composite
EX81, 2, 4, 8, 14, 8E, 15X, 2E8, 5E4, EX8X1E30E4491975X8600deficient, composite
EX91, 3, 3E7, EX9413X83EE3EX3EX7E03E9deficient, squarefree, semiprime, composite
EXX1, 2, 5E5, EXX415X65E85E75E75E45E6deficient, squarefree, semiprime, composite
EXE1, 5, 7, 2E, 41, 185, 247, EXE81480491102282038Edeficient, composite
EE01, 2, 3, 4, 6, E, 10, 11, 1X, 22, 29, 33, 38, 44, 56, 66, E0, EE, 110, 1EX, 2E9, 3E8, 5E6, EE020288018902527340870abundant, semiperfect, composite
EE11, 15, 85, EE1410909E9X9XE1499deficient, squarefree, semiprime, composite
EE21, 2, 5E7, EE2415E05EX5E95E95E65E8deficient, squarefree, semiprime, composite
EE31, 3, 9, 13E, 3E9, EE3615405491421457E0403deficient, composite
EE41, 2, 4, 5, 8, X, 18, 34, 37, 72, 124, 15E, 248, 2EX, 5E8, EE414236013684246480734abundant, semiperfect, composite
EE51, EE52EE61EE5EE5EE41deficient, squarefree, prime
EE61, 2, 3, 6, 7, 12, 19, 35, 36, 6X, X3, 186, 1EE, 3EX, 5E9, EE614240014064545340876abundant, semiperfect, squarefree, composite
EE71, EE72EE81EE7EE7EE61deficient, squarefree, prime
EE81, 2, 4, 2EE, 5EX, EE8619009043013035E8600deficient, composite
EE91, 3, 5, 13, 1E, 21, 59, 63, 97, 249, 3EE, EE910188088327306145X5deficient, composite
EEX1, 2, 5EE, EEX416006026016015EX600deficient, squarefree, semiprime, composite
EEE1, E, 111, EEE41120121120120XX011Edeficient, squarefree, semiprime, composite
10001, 2, 3, 4, 6, 8, 9, 10, 14, 16, 20, 23, 28, 30, 40, 46, 54, 60, 80, 90, 100, 140, 160, 200, 300, 400, 600, 1000242E341E34519400800abundant, perfect power, semiperfect, composite
Community content is available under CC-BY-SA unless otherwise noted.