Dozenal Wiki
Advertisement

The tables below list all of the divisors of the numbers 1 to 1000.

A divisor of an integer n is an integer m, for which n/m is again an integer (which is necessarily also a divisor of n). For example, 4 is a divisor of 24 since 24/4 = 7 (and 7 is also a divisor of 24).

If m is a divisor of n then so is −m. The tables below only list positive divisors.

Key to the tables[]

  • d(n) is the number of positive divisors of n, including 1 and n itself
  • Οƒ(n) is the sum of the positive divisors of n, including 1 and n itself
  • s(n) is the sum of the proper divisors of n, including 1, but not n itself; that is, s(n) = Οƒ(n) − n
  • a deficient number is greater than the sum of its proper divisors; that is, s(n) < n
  • a perfect number equals the sum of its proper divisors; that is, s(n) = n
  • an abundant number is lesser than the sum of its proper divisors; that is, s(n) > n
  • a highly abundant number has a sum of proper divisors greater than any lesser number's sum of proper divisors; that is, s(n) > s(m) for every positive integer m < n

(Note: confusingly, the first 7 highly abundant numbers aren't abundant numbers)

  • a prime number has only 1 and itself as divisors; that is, d(n) = 2. Prime numbers are always deficient as s(n)=1
  • a composite number has more than just 1 and itself as divisors; that is, d(n) > 2
  • a highly composite number has more divisors than any lesser number; that is, d(n) > d(m) for every positive integer m < n

(Note: confusingly, the first 2 highly composite numbers aren't composite numbers)

  • a superior highly composite number has more divisors than any other number scaled relative to some positive power of the number itself; that is, there exists some Ξ΅ such that for every other positive integer m. Superior highly composite numbers are always highly composite numbers
  • a weird number is an abundant number that is not semiperfect; that is, no subset of the proper divisors of n sum to n

1 to 100[]

n Divisors d(n) Οƒ(n) s(n) sopf(n) sopfr(n) Ο†(n) nβˆ’Ο†(n) Notes
1 1 1 1 0 0 0 1 0 deficient, square, perfect power, highly composite, highly abundant, squarefree, unit
2 1, 2 2 3 1 2 2 1 1 deficient, highly composite, highly abundant, superior highly composite, squarefree, prime
3 1, 3 2 4 1 3 3 2 1 deficient, highly abundant, squarefree, prime
4 1, 2, 4 3 7 3 2 4 2 2 deficient, square, perfect power, highly composite, highly abundant, semiprime, composite
5 1, 5 2 6 1 5 5 4 1 deficient, squarefree, prime
6 1, 2, 3, 6 4 10 6 5 5 2 4 perfect, semiperfect, highly composite, highly abundant, superior highly composite, squarefree, semiprime, composite
7 1, 7 2 8 1 7 7 6 1 deficient, squarefree, prime
8 1, 2, 4, 8 4 13 7 2 6 4 4 deficient, perfect power, highly abundant, composite
9 1, 3, 9 3 11 4 3 6 6 3 deficient, square, perfect power, semiprime, composite
X 1, 2, 5, X 4 16 8 7 7 4 6 deficient, highly abundant, squarefree, semiprime, composite
E 1, E 2 10 1 E E X 1 deficient, squarefree, prime
10 1, 2, 3, 4, 6, 10 6 24 14 5 7 4 8 abundant, semiperfect, highly composite, highly abundant, superior highly composite, sublime, composite
11 1, 11 2 12 1 11 11 10 1 deficient, squarefree, prime
12 1, 2, 7, 12 4 20 X 9 9 6 8 deficient, squarefree, semiprime, composite
13 1, 3, 5, 13 4 20 9 8 8 8 7 deficient, squarefree, semiprime, composite
14 1, 2, 4, 8, 14 5 27 13 2 8 8 8 deficient, square, perfect power, highly abundant, composite
15 1, 15 2 16 1 15 15 14 1 deficient, squarefree, prime
16 1, 2, 3, 6, 9, 16 6 33 19 5 8 6 10 abundant, semiperfect, highly abundant, composite
17 1, 17 2 18 1 17 17 16 1 deficient, squarefree, prime
18 1, 2, 4, 5, X, 18 6 36 1X 7 9 8 10 abundant, semiperfect, highly abundant, primitive abundant, composite
19 1, 3, 7, 19 4 28 E X X 10 9 deficient, squarefree, semiprime, composite
1X 1, 2, E, 1X 4 30 12 11 11 X 10 deficient, squarefree, semiprime, composite
1E 1, 1E 2 20 1 1E 1E 1X 1 deficient, squarefree, prime
20 1, 2, 3, 4, 6, 8, 10, 20 8 50 30 5 9 8 14 abundant, semiperfect, highly composite, highly abundant, composite
n Divisors d(n) Οƒ(n) s(n) sopf(n) sopfr(n) Ο†(n) nβˆ’Ο†(n) Notes
21 1, 5, 21 3 27 6 5 X 18 5 deficient, square, perfect power, semiprime, composite
22 1, 2, 11, 22 4 36 14 13 13 10 12 deficient, squarefree, semiprime, composite
23 1, 3, 9, 23 4 34 11 3 9 16 9 deficient, perfect power, composite
24 1, 2, 4, 7, 12, 24 6 48 24 9 E 10 14 perfect, semiperfect, composite
25 1, 25 2 26 1 25 25 24 1 deficient, squarefree, prime
26 1, 2, 3, 5, 6, X, 13, 26 8 60 36 X X 8 1X abundant, semiperfect, highly abundant, squarefree, sphenic, composite
27 1, 27 2 28 1 27 27 26 1 deficient, squarefree, prime
28 1, 2, 4, 8, 14, 28 6 53 27 2 X 14 14 deficient, perfect power, composite
29 1, 3, E, 29 4 40 13 12 12 18 11 deficient, squarefree, semiprime, composite
2X 1, 2, 15, 2X 4 46 18 17 17 14 16 deficient, squarefree, semiprime, composite
2E 1, 5, 7, 2E 4 40 11 10 10 20 E deficient, squarefree, semiprime, composite
30 1, 2, 3, 4, 6, 9, 10, 16, 30 9 77 47 5 X 10 20 abundant, square, perfect power, semiperfect, highly composite, highly abundant, composite
31 1, 31 2 32 1 31 31 30 1 deficient, squarefree, prime
32 1, 2, 17, 32 4 50 1X 19 19 16 18 deficient, squarefree, semiprime, composite
33 1, 3, 11, 33 4 48 15 14 14 20 13 deficient, squarefree, semiprime, composite
34 1, 2, 4, 5, 8, X, 18, 34 8 76 42 7 E 14 20 abundant, semiperfect, composite
35 1, 35 2 36 1 35 35 34 1 deficient, squarefree, prime
36 1, 2, 3, 6, 7, 12, 19, 36 8 80 46 10 10 10 26 abundant, semiperfect, highly abundant, squarefree, sphenic, composite
37 1, 37 2 38 1 37 37 36 1 deficient, squarefree, prime
38 1, 2, 4, E, 1X, 38 6 70 34 11 13 18 20 deficient, composite
39 1, 3, 5, 9, 13, 39 6 66 29 8 E 20 19 deficient, composite
3X 1, 2, 1E, 3X 4 60 22 21 21 1X 20 deficient, squarefree, semiprime, composite
3E 1, 3E 2 40 1 3E 3E 3X 1 deficient, squarefree, prime
40 1, 2, 3, 4, 6, 8, 10, 14, 20, 40 X X4 64 5 E 14 28 abundant, semiperfect, highly composite, highly abundant, composite
n Divisors d(n) Οƒ(n) s(n) sopf(n) sopfr(n) Ο†(n) nβˆ’Ο†(n) Notes
41 1, 7, 41 3 49 8 7 12 36 7 deficient, square, perfect power, semiprime, composite
42 1, 2, 5, X, 21, 42 6 79 37 7 10 18 26 deficient, composite
43 1, 3, 15, 43 4 60 19 18 18 28 17 deficient, squarefree, semiprime, composite
44 1, 2, 4, 11, 22, 44 6 82 3X 13 15 20 24 deficient, composite
45 1, 45 2 46 1 45 45 44 1 deficient, squarefree, prime
46 1, 2, 3, 6, 9, 16, 23, 46 8 X0 56 5 E 16 30 abundant, semiperfect, composite
47 1, 5, E, 47 4 60 15 14 14 34 13 deficient, squarefree, semiprime, composite
48 1, 2, 4, 7, 8, 12, 24, 48 8 X0 54 9 11 20 28 abundant, semiperfect, composite
49 1, 3, 17, 49 4 68 1E 1X 1X 30 19 deficient, squarefree, semiprime, composite
4X 1, 2, 25, 4X 4 76 28 27 27 24 26 deficient, squarefree, semiprime, composite
4E 1, 4E 2 50 1 4E 4E 4X 1 deficient, squarefree, prime
50 1, 2, 3, 4, 5, 6, X, 10, 13, 18, 26, 50 10 120 90 X 10 14 38 abundant, semiperfect, highly composite, highly abundant, superior highly composite, composite
51 1, 51 2 52 1 51 51 50 1 deficient, squarefree, prime
52 1, 2, 27, 52 4 80 2X 29 29 26 28 deficient, squarefree, semiprime, composite
53 1, 3, 7, 9, 19, 53 6 88 35 X 11 30 23 deficient, composite
54 1, 2, 4, 8, 14, 28, 54 7 X7 53 2 10 28 28 deficient, square, perfect power, composite
55 1, 5, 11, 55 4 70 17 16 16 40 15 deficient, squarefree, semiprime, composite
56 1, 2, 3, 6, E, 1X, 29, 56 8 100 66 14 14 18 3X abundant, semiperfect, squarefree, sphenic, composite
57 1, 57 2 58 1 57 57 56 1 deficient, squarefree, prime
58 1, 2, 4, 15, 2X, 58 6 X6 4X 17 19 28 30 deficient, composite
59 1, 3, 1E, 59 4 80 23 22 22 38 21 deficient, squarefree, semiprime, composite
5X 1, 2, 5, 7, X, 12, 2E, 5X 8 100 62 12 12 20 3X abundant, weird, primitive abundant, squarefree, sphenic, composite
5E 1, 5E 2 60 1 5E 5E 5X 1 deficient, squarefree, prime
60 1, 2, 3, 4, 6, 8, 9, 10, 16, 20, 30, 60 10 143 X3 5 10 20 40 abundant, semiperfect, highly abundant, composite
n Divisors d(n) Οƒ(n) s(n) sopf(n) sopfr(n) Ο†(n) nβˆ’Ο†(n) Notes
61 1, 61 2 62 1 61 61 60 1 deficient, squarefree, prime
62 1, 2, 31, 62 4 96 34 33 33 30 32 deficient, squarefree, semiprime, composite
63 1, 3, 5, 13, 21, 63 6 X4 41 8 11 34 2E deficient, composite
64 1, 2, 4, 17, 32, 64 6 E8 54 19 1E 30 34 deficient, composite
65 1, 7, E, 65 4 80 17 16 16 50 15 deficient, squarefree, semiprime, composite
66 1, 2, 3, 6, 11, 22, 33, 66 8 120 76 16 16 20 46 abundant, semiperfect, squarefree, sphenic, composite
67 1, 67 2 68 1 67 67 66 1 deficient, squarefree, prime
68 1, 2, 4, 5, 8, X, 14, 18, 34, 68 X 136 8X 7 11 28 40 abundant, semiperfect, composite
69 1, 3, 9, 23, 69 5 X1 34 3 10 46 23 deficient, square, perfect power, composite
6X 1, 2, 35, 6X 4 X6 38 37 37 34 36 deficient, squarefree, semiprime, composite
6E 1, 6E 2 70 1 6E 6E 6X 1 deficient, squarefree, prime
70 1, 2, 3, 4, 6, 7, 10, 12, 19, 24, 36, 70 10 168 E8 10 12 20 50 abundant, semiperfect, highly abundant, composite
71 1, 5, 15, 71 4 90 1E 1X 1X 54 19 deficient, squarefree, semiprime, composite
72 1, 2, 37, 72 4 E0 3X 39 39 36 38 deficient, squarefree, semiprime, composite
73 1, 3, 25, 73 4 X0 29 28 28 48 27 deficient, squarefree, semiprime, composite
74 1, 2, 4, 8, E, 1X, 38, 74 8 130 78 11 15 34 40 abundant, semiperfect, primitive abundant, composite
75 1, 75 2 76 1 75 75 74 1 deficient, squarefree, prime
76 1, 2, 3, 5, 6, 9, X, 13, 16, 26, 39, 76 10 176 100 X 11 20 56 abundant, semiperfect, highly abundant, composite
77 1, 7, 11, 77 4 94 19 18 18 60 17 deficient, squarefree, semiprime, composite
78 1, 2, 4, 1E, 3X, 78 6 120 64 21 23 38 40 deficient, composite
79 1, 3, 27, 79 4 X8 2E 2X 2X 50 29 deficient, squarefree, semiprime, composite
7X 1, 2, 3E, 7X 4 100 42 41 41 3X 40 deficient, squarefree, semiprime, composite
7E 1, 5, 17, 7E 4 X0 21 20 20 60 1E deficient, squarefree, semiprime, composite
80 1, 2, 3, 4, 6, 8, 10, 14, 20, 28, 40, 80 10 190 110 5 11 28 54 abundant, semiperfect, highly abundant, composite
n Divisors d(n) Οƒ(n) s(n) sopf(n) sopfr(n) Ο†(n) nβˆ’Ο†(n) Notes
81 1, 81 2 82 1 81 81 80 1 deficient, squarefree, prime
82 1, 2, 7, 12, 41, 82 6 123 61 9 14 36 48 deficient, composite
83 1, 3, 9, E, 29, 83 6 110 49 12 15 50 33 deficient, composite
84 1, 2, 4, 5, X, 18, 21, 42, 84 9 161 99 7 12 34 50 abundant, square, perfect power, semiperfect, composite
85 1, 85 2 86 1 85 85 84 1 deficient, squarefree, prime
86 1, 2, 3, 6, 15, 2X, 43, 86 8 160 96 1X 1X 28 5X abundant, semiperfect, squarefree, sphenic, composite
87 1, 87 2 88 1 87 87 86 1 deficient, squarefree, prime
88 1, 2, 4, 8, 11, 22, 44, 88 8 156 8X 13 17 40 48 abundant, semiperfect, primitive abundant, composite
89 1, 3, 5, 7, 13, 19, 2E, 89 8 140 73 13 13 40 49 deficient, squarefree, sphenic, composite
8X 1, 2, 45, 8X 4 116 48 47 47 44 46 deficient, squarefree, semiprime, composite
8E 1, 8E 2 90 1 8E 8E 8X 1 deficient, squarefree, prime
90 1, 2, 3, 4, 6, 9, 10, 16, 23, 30, 46, 90 10 1E4 124 5 11 30 60 abundant, semiperfect, highly abundant, composite
91 1, 91 2 92 1 91 91 90 1 deficient, squarefree, prime
92 1, 2, 5, X, E, 1X, 47, 92 8 160 8X 16 16 34 5X deficient, squarefree, sphenic, composite
93 1, 3, 31, 93 4 108 35 34 34 60 33 deficient, squarefree, semiprime, composite
94 1, 2, 4, 7, 8, 12, 14, 24, 48, 94 X 188 E4 9 13 40 54 abundant, semiperfect, composite
95 1, 95 2 96 1 95 95 94 1 deficient, squarefree, prime
96 1, 2, 3, 6, 17, 32, 49, 96 8 180 X6 20 20 30 66 abundant, semiperfect, squarefree, sphenic, composite
97 1, 5, 1E, 97 4 100 25 24 24 74 23 deficient, squarefree, semiprime, composite
98 1, 2, 4, 25, 4X, 98 6 156 7X 27 29 48 50 deficient, composite
99 1, 3, 9, 11, 33, 99 6 132 55 14 17 60 39 deficient, composite
9X 1, 2, 4E, 9X 4 130 52 51 51 4X 50 deficient, squarefree, semiprime, composite
9E 1, 7, 15, 9E 4 100 21 20 20 80 1E deficient, squarefree, semiprime, composite
X0 1, 2, 3, 4, 5, 6, 8, X, 10, 13, 18, 20, 26, 34, 50, X0 14 260 180 X 12 28 74 abundant, semiperfect, highly composite, highly abundant, superior highly composite, composite
n Divisors d(n) Οƒ(n) s(n) sopf(n) sopfr(n) Ο†(n) nβˆ’Ο†(n) Notes
X1 1, E, X1 3 E1 10 E 1X 92 E deficient, square, perfect power, semiprime, composite
X2 1, 2, 51, X2 4 136 54 53 53 50 52 deficient, squarefree, semiprime, composite
X3 1, 3, 35, X3 4 120 39 38 38 68 37 deficient, squarefree, semiprime, composite
X4 1, 2, 4, 27, 52, X4 6 168 84 29 2E 50 54 deficient, composite
X5 1, 5, 21, X5 4 110 27 5 13 84 21 deficient, perfect power, composite
X6 1, 2, 3, 6, 7, 9, 12, 16, 19, 36, 53, X6 10 220 136 10 13 30 76 abundant, semiperfect, composite
X7 1, X7 2 X8 1 X7 X7 X6 1 deficient, squarefree, prime
X8 1, 2, 4, 8, 14, 28, 54, X8 8 193 X7 2 12 54 54 deficient, perfect power, composite
X9 1, 3, 37, X9 4 128 3E 3X 3X 70 39 deficient, squarefree, semiprime, composite
XX 1, 2, 5, X, 11, 22, 55, XX 8 190 X2 18 18 40 6X deficient, squarefree, sphenic, composite
XE 1, XE 2 E0 1 XE XE XX 1 deficient, squarefree, prime
E0 1, 2, 3, 4, 6, E, 10, 1X, 29, 38, 56, E0 10 240 150 14 16 34 78 abundant, semiperfect, composite
E1 1, 7, 17, E1 4 114 23 22 22 90 21 deficient, squarefree, semiprime, composite
E2 1, 2, 57, E2 4 150 5X 59 59 56 58 deficient, squarefree, semiprime, composite
E3 1, 3, 5, 9, 13, 23, 39, E3 8 180 89 8 12 60 53 deficient, composite
E4 1, 2, 4, 8, 15, 2X, 58, E4 8 1X6 E2 17 1E 54 60 deficient, composite
E5 1, E5 2 E6 1 E5 E5 E4 1 deficient, squarefree, prime
E6 1, 2, 3, 6, 1E, 3X, 59, E6 8 200 106 24 24 38 7X abundant, semiperfect, squarefree, sphenic, composite
E7 1, E7 2 E8 1 E7 E7 E6 1 deficient, squarefree, prime
E8 1, 2, 4, 5, 7, X, 12, 18, 24, 2E, 5X, E8 10 240 144 12 14 40 78 abundant, semiperfect, composite
E9 1, 3, 3E, E9 4 140 43 42 42 78 41 deficient, squarefree, semiprime, composite
EX 1, 2, 5E, EX 4 160 62 61 61 5X 60 deficient, squarefree, semiprime, composite
EE 1, E, 11, EE 4 120 21 20 20 X0 1E deficient, squarefree, semiprime, composite
100 1, 2, 3, 4, 6, 8, 9, 10, 14, 16, 20, 30, 40, 60, 100 13 297 197 5 12 40 80 abundant, square, perfect power, semiperfect, highly abundant, composite

101 to 200[]

n Divisors d(n) Οƒ(n) s(n) sopf(n) sopfr(n) Ο†(n) nβˆ’Ο†(n) Notes
101 1, 5, 25, 101 4 130 2E 2X 2X 94 29 deficient, squarefree, semiprime, composite
102 1, 2, 61, 102 4 166 64 63 63 60 62 deficient, squarefree, semiprime, composite
103 1, 3, 7, 19, 41, 103 6 170 69 X 15 70 53 deficient, composite
104 1, 2, 4, 31, 62, 104 6 1X2 9X 33 35 60 64 deficient, composite
105 1, 105 2 106 1 105 105 104 1 deficient, squarefree, prime
106 1, 2, 3, 5, 6, X, 13, 21, 26, 42, 63, 106 10 270 166 X 13 34 92 abundant, semiperfect, composite
107 1, 107 2 108 1 107 107 106 1 deficient, squarefree, prime
108 1, 2, 4, 8, 17, 32, 64, 108 8 210 104 19 21 60 68 deficient, composite
109 1, 3, 9, 15, 43, 109 6 176 69 18 1E 80 49 deficient, composite
10X 1, 2, 7, E, 12, 1X, 65, 10X 8 200 E2 18 18 50 7X deficient, squarefree, sphenic, composite
10E 1, 5, 27, 10E 4 140 31 30 30 X0 2E deficient, squarefree, semiprime, composite
110 1, 2, 3, 4, 6, 10, 11, 22, 33, 44, 66, 110 10 288 178 16 18 40 90 abundant, semiperfect, composite
111 1, 111 2 112 1 111 111 110 1 deficient, squarefree, prime
112 1, 2, 67, 112 4 180 6X 69 69 66 68 deficient, squarefree, semiprime, composite
113 1, 3, 45, 113 4 160 49 48 48 88 47 deficient, squarefree, semiprime, composite
114 1, 2, 4, 5, 8, X, 14, 18, 28, 34, 68, 114 10 276 162 7 13 54 80 abundant, semiperfect, composite
115 1, 7, 1E, 115 4 140 27 26 26 E0 25 deficient, squarefree, semiprime, composite
116 1, 2, 3, 6, 9, 16, 23, 46, 69, 116 X 263 149 5 12 46 90 abundant, semiperfect, composite
117 1, 117 2 118 1 117 117 116 1 deficient, squarefree, prime
118 1, 2, 4, 35, 6X, 118 6 206 XX 37 39 68 70 deficient, composite
119 1, 3, 5, E, 13, 29, 47, 119 8 200 X3 17 17 68 71 deficient, squarefree, sphenic, composite
11X 1, 2, 6E, 11X 4 190 72 71 71 6X 70 deficient, squarefree, semiprime, composite
11E 1, 11E 2 120 1 11E 11E 11X 1 deficient, squarefree, prime
120 1, 2, 3, 4, 6, 7, 8, 10, 12, 19, 20, 24, 36, 48, 70, 120 14 340 220 10 14 40 X0 abundant, semiperfect, highly abundant, composite
n Divisors d(n) Οƒ(n) s(n) sopf(n) sopfr(n) Ο†(n) nβˆ’Ο†(n) Notes
121 1, 11, 121 3 133 12 11 22 110 11 deficient, square, perfect power, semiprime, composite
122 1, 2, 5, X, 15, 2X, 71, 122 8 230 10X 20 20 54 8X deficient, squarefree, sphenic, composite
123 1, 3, 9, 17, 49, 123 6 198 75 1X 21 90 53 deficient, composite
124 1, 2, 4, 37, 72, 124 6 218 E4 39 3E 70 74 deficient, composite
125 1, 125 2 126 1 125 125 124 1 deficient, squarefree, prime
126 1, 2, 3, 6, 25, 4X, 73, 126 8 260 136 2X 2X 48 9X abundant, semiperfect, squarefree, sphenic, composite
127 1, 5, 7, 21, 2E, 127 6 188 61 10 15 X0 47 deficient, composite
128 1, 2, 4, 8, E, 14, 1X, 38, 74, 128 X 270 144 11 17 68 80 abundant, semiperfect, composite
129 1, 3, 4E, 129 4 180 53 52 52 98 51 deficient, squarefree, semiprime, composite
12X 1, 2, 75, 12X 4 1X6 78 77 77 74 76 deficient, squarefree, semiprime, composite
12E 1, 12E 2 130 1 12E 12E 12X 1 deficient, squarefree, prime
130 1, 2, 3, 4, 5, 6, 9, X, 10, 13, 16, 18, 26, 30, 39, 50, 76, 130 16 396 266 X 13 40 E0 abundant, semiperfect, highly composite, highly abundant, composite
131 1, 131 2 132 1 131 131 130 1 deficient, squarefree, prime
132 1, 2, 7, 11, 12, 22, 77, 132 8 240 10X 1X 1X 60 92 deficient, squarefree, sphenic, composite
133 1, 3, 51, 133 4 188 55 54 54 X0 53 deficient, squarefree, semiprime, composite
134 1, 2, 4, 8, 1E, 3X, 78, 134 8 260 128 21 25 74 80 deficient, composite
135 1, 5, 31, 135 4 170 37 36 36 100 35 deficient, squarefree, semiprime, composite
136 1, 2, 3, 6, 27, 52, 79, 136 8 280 146 30 30 50 X6 abundant, semiperfect, squarefree, sphenic, composite
137 1, E, 15, 137 4 160 25 24 24 114 23 deficient, squarefree, semiprime, composite
138 1, 2, 4, 3E, 7X, 138 6 240 104 41 43 78 80 deficient, composite
139 1, 3, 7, 9, 19, 23, 53, 139 8 228 XE X 14 90 69 deficient, composite
13X 1, 2, 5, X, 17, 32, 7E, 13X 8 260 122 22 22 60 9X deficient, squarefree, sphenic, composite
13E 1, 13E 2 140 1 13E 13E 13X 1 deficient, squarefree, prime
140 1, 2, 3, 4, 6, 8, 10, 14, 20, 28, 40, 54, 80, 140 12 364 224 5 13 54 X8 abundant, semiperfect, composite
n Divisors d(n) Οƒ(n) s(n) sopf(n) sopfr(n) Ο†(n) nβˆ’Ο†(n) Notes
141 1, 141 2 142 1 141 141 140 1 deficient, squarefree, prime
142 1, 2, 81, 142 4 206 84 83 83 80 82 deficient, squarefree, semiprime, composite
143 1, 3, 5, 11, 13, 33, 55, 143 8 240 E9 19 19 80 83 deficient, squarefree, sphenic, composite
144 1, 2, 4, 7, 12, 24, 41, 82, 144 9 293 14E 9 16 70 94 abundant, square, perfect power, semiperfect, composite
145 1, 145 2 146 1 145 145 144 1 deficient, squarefree, prime
146 1, 2, 3, 6, 9, E, 16, 1X, 29, 56, 83, 146 10 330 1X6 14 17 50 E6 abundant, semiperfect, composite
147 1, 147 2 148 1 147 147 146 1 deficient, squarefree, prime
148 1, 2, 4, 5, 8, X, 18, 21, 34, 42, 84, 148 10 329 1X1 7 14 68 X0 abundant, semiperfect, composite
149 1, 3, 57, 149 4 1X8 5E 5X 5X E0 59 deficient, squarefree, semiprime, composite
14X 1, 2, 85, 14X 4 216 88 87 87 84 86 deficient, squarefree, semiprime, composite
14E 1, 7, 25, 14E 4 180 31 30 30 120 2E deficient, squarefree, semiprime, composite
150 1, 2, 3, 4, 6, 10, 15, 2X, 43, 58, 86, 150 10 360 210 1X 20 54 E8 abundant, semiperfect, composite
151 1, 5, 35, 151 4 190 3E 3X 3X 114 39 deficient, squarefree, semiprime, composite
152 1, 2, 87, 152 4 220 8X 89 89 86 88 deficient, squarefree, semiprime, composite
153 1, 3, 9, 1E, 59, 153 6 220 89 22 25 E0 63 deficient, composite
154 1, 2, 4, 8, 11, 14, 22, 44, 88, 154 X 302 16X 13 19 80 94 abundant, semiperfect, composite
155 1, E, 17, 155 4 180 27 26 26 130 25 deficient, squarefree, semiprime, composite
156 1, 2, 3, 5, 6, 7, X, 12, 13, 19, 26, 2E, 36, 5X, 89, 156 14 400 266 15 15 40 116 abundant, semiperfect, highly abundant, squarefree, composite
157 1, 157 2 158 1 157 157 156 1 deficient, squarefree, prime
158 1, 2, 4, 45, 8X, 158 6 276 11X 47 49 88 90 deficient, composite
159 1, 3, 5E, 159 4 200 63 62 62 E8 61 deficient, squarefree, semiprime, composite
15X 1, 2, 8E, 15X 4 230 92 91 91 8X 90 deficient, squarefree, semiprime, composite
15E 1, 5, 37, 15E 4 1X0 41 40 40 120 3E deficient, squarefree, semiprime, composite
160 1, 2, 3, 4, 6, 8, 9, 10, 16, 20, 23, 30, 46, 60, 90, 160 14 420 280 5 13 60 100 abundant, perfect power, semiperfect, highly abundant, composite
n Divisors d(n) Οƒ(n) s(n) sopf(n) sopfr(n) Ο†(n) nβˆ’Ο†(n) Notes
161 1, 7, 27, 161 4 194 33 32 32 130 31 deficient, squarefree, semiprime, composite
162 1, 2, 91, 162 4 236 94 93 93 90 92 deficient, squarefree, semiprime, composite
163 1, 3, 61, 163 4 208 65 64 64 100 63 deficient, squarefree, semiprime, composite
164 1, 2, 4, 5, X, E, 18, 1X, 38, 47, 92, 164 10 360 1E8 16 18 68 E8 abundant, semiperfect, composite
165 1, 11, 15, 165 4 190 27 26 26 140 25 deficient, squarefree, semiprime, composite
166 1, 2, 3, 6, 31, 62, 93, 166 8 320 176 36 36 60 106 abundant, semiperfect, squarefree, sphenic, composite
167 1, 167 2 168 1 167 167 166 1 deficient, squarefree, prime
168 1, 2, 4, 7, 8, 12, 14, 24, 28, 48, 94, 168 10 360 1E4 9 15 80 X8 abundant, semiperfect, composite
169 1, 3, 5, 9, 13, 21, 39, 63, 169 9 297 12X 8 14 X0 89 deficient, square, perfect power, composite
16X 1, 2, 95, 16X 4 246 98 97 97 94 96 deficient, squarefree, semiprime, composite
16E 1, 16E 2 170 1 16E 16E 16X 1 deficient, squarefree, prime
170 1, 2, 3, 4, 6, 10, 17, 32, 49, 64, 96, 170 10 3X8 238 20 22 60 110 abundant, semiperfect, composite
171 1, 171 2 172 1 171 171 170 1 deficient, squarefree, prime
172 1, 2, 5, X, 1E, 3X, 97, 172 8 300 14X 26 26 74 EX deficient, squarefree, sphenic, composite
173 1, 3, 7, E, 19, 29, 65, 173 8 280 109 19 19 X0 93 deficient, squarefree, sphenic, composite
174 1, 2, 4, 8, 25, 4X, 98, 174 8 316 162 27 2E 94 X0 deficient, composite
175 1, 175 2 176 1 175 175 174 1 deficient, squarefree, prime
176 1, 2, 3, 6, 9, 11, 16, 22, 33, 66, 99, 176 10 396 220 16 19 60 116 abundant, semiperfect, composite
177 1, 5, 3E, 177 4 200 45 44 44 134 43 deficient, squarefree, semiprime, composite
178 1, 2, 4, 4E, 9X, 178 6 2E0 134 51 53 98 X0 deficient, composite
179 1, 3, 67, 179 4 228 6E 6X 6X 110 69 deficient, squarefree, semiprime, composite
17X 1, 2, 7, 12, 15, 2X, 9E, 17X 8 300 142 22 22 80 EX deficient, squarefree, sphenic, composite
17E 1, 17E 2 180 1 17E 17E 17X 1 deficient, squarefree, prime
180 1, 2, 3, 4, 5, 6, 8, X, 10, 13, 14, 18, 20, 26, 34, 40, 50, 68, X0, 180 18 520 360 X 14 54 128 abundant, semiperfect, highly composite, highly abundant, composite
n Divisors d(n) Οƒ(n) s(n) sopf(n) sopfr(n) Ο†(n) nβˆ’Ο†(n) Notes
181 1, 181 2 182 1 181 181 180 1 deficient, squarefree, prime
182 1, 2, E, 1X, X1, 182 6 293 111 11 20 92 E0 deficient, composite
183 1, 3, 9, 23, 69, 183 6 264 X1 3 13 116 69 deficient, perfect power, composite
184 1, 2, 4, 51, X2, 184 6 302 13X 53 55 X0 X4 deficient, composite
185 1, 5, 7, 2E, 41, 185 6 246 81 10 17 120 65 deficient, composite
186 1, 2, 3, 6, 35, 6X, X3, 186 8 360 196 3X 3X 68 11X abundant, semiperfect, squarefree, sphenic, composite
187 1, 11, 17, 187 4 1E4 29 28 28 160 27 deficient, squarefree, semiprime, composite
188 1, 2, 4, 8, 27, 52, X4, 188 8 340 174 29 31 X0 X8 deficient, composite
189 1, 3, 6E, 189 4 240 73 72 72 118 71 deficient, squarefree, semiprime, composite
18X 1, 2, 5, X, 21, 42, X5, 18X 8 330 162 7 15 84 106 deficient, composite
18E 1, 18E 2 190 1 18E 18E 18X 1 deficient, squarefree, prime
190 1, 2, 3, 4, 6, 7, 9, 10, 12, 16, 19, 24, 30, 36, 53, 70, X6, 190 16 508 338 10 15 60 130 abundant, semiperfect, composite
191 1, E, 1E, 191 4 200 2E 2X 2X 164 29 deficient, squarefree, semiprime, composite
192 1, 2, X7, 192 4 280 XX X9 X9 X6 X8 deficient, squarefree, semiprime, composite
193 1, 3, 5, 13, 15, 43, 71, 193 8 300 129 21 21 X8 X7 deficient, squarefree, sphenic, composite
194 1, 2, 4, 8, 14, 28, 54, X8, 194 9 367 193 2 14 X8 X8 deficient, square, perfect power, composite
195 1, 195 2 196 1 195 195 194 1 deficient, squarefree, prime
196 1, 2, 3, 6, 37, 72, X9, 196 8 380 1X6 40 40 70 126 abundant, semiperfect, squarefree, sphenic, composite
197 1, 7, 31, 197 4 214 39 38 38 160 37 deficient, squarefree, semiprime, composite
198 1, 2, 4, 5, X, 11, 18, 22, 44, 55, XX, 198 10 410 234 18 1X 80 118 abundant, semiperfect, composite
199 1, 3, 9, 25, 73, 199 6 286 X9 28 2E 120 79 deficient, composite
19X 1, 2, XE, 19X 4 290 E2 E1 E1 XX E0 deficient, squarefree, semiprime, composite
19E 1, 19E 2 1X0 1 19E 19E 19X 1 deficient, squarefree, prime
1X0 1, 2, 3, 4, 6, 8, E, 10, 1X, 20, 29, 38, 56, 74, E0, 1X0 14 500 320 14 18 68 134 abundant, semiperfect, composite
n Divisors d(n) Οƒ(n) s(n) sopf(n) sopfr(n) Ο†(n) nβˆ’Ο†(n) Notes
1X1 1, 5, 45, 1X1 4 230 4E 4X 4X 154 49 deficient, squarefree, semiprime, composite
1X2 1, 2, 7, 12, 17, 32, E1, 1X2 8 340 15X 24 24 90 112 deficient, squarefree, sphenic, composite
1X3 1, 3, 75, 1X3 4 260 79 78 78 128 77 deficient, squarefree, semiprime, composite
1X4 1, 2, 4, 57, E2, 1X4 6 338 154 59 5E E0 E4 deficient, composite
1X5 1, 1X5 2 1X6 1 1X5 1X5 1X4 1 deficient, squarefree, prime
1X6 1, 2, 3, 5, 6, 9, X, 13, 16, 23, 26, 39, 46, 76, E3, 1X6 14 500 316 X 14 60 146 abundant, semiperfect, composite
1X7 1, 1X7 2 1X8 1 1X7 1X7 1X6 1 deficient, squarefree, prime
1X8 1, 2, 4, 8, 14, 15, 2X, 58, E4, 1X8 X 3X6 1EX 17 21 X8 100 abundant, semiperfect, primitive abundant, composite
1X9 1, 3, 7, 11, 19, 33, 77, 1X9 8 314 127 1E 1E 100 X9 deficient, squarefree, sphenic, composite
1XX 1, 2, E5, 1XX 4 2X6 E8 E7 E7 E4 E6 deficient, squarefree, semiprime, composite
1XE 1, 5, E, 21, 47, 1XE 6 270 81 14 19 148 63 deficient, composite
1E0 1, 2, 3, 4, 6, 10, 1E, 3X, 59, 78, E6, 1E0 10 480 290 24 26 74 138 abundant, semiperfect, composite
1E1 1, 1E1 2 1E2 1 1E1 1E1 1E0 1 deficient, squarefree, prime
1E2 1, 2, E7, 1E2 4 2E0 EX E9 E9 E6 E8 deficient, squarefree, semiprime, composite
1E3 1, 3, 9, 27, 79, 1E3 6 2X8 E5 2X 31 130 83 deficient, composite
1E4 1, 2, 4, 5, 7, 8, X, 12, 18, 24, 2E, 34, 48, 5X, E8, 1E4 14 500 308 12 16 80 134 abundant, semiperfect, composite
1E5 1, 1E5 2 1E6 1 1E5 1E5 1E4 1 deficient, squarefree, prime
1E6 1, 2, 3, 6, 3E, 7X, E9, 1E6 8 400 206 44 44 78 13X abundant, semiperfect, squarefree, sphenic, composite
1E7 1, 1E7 2 1E8 1 1E7 1E7 1E6 1 deficient, squarefree, prime
1E8 1, 2, 4, 5E, EX, 1E8 6 360 164 61 63 E8 100 deficient, composite
1E9 1, 3, 5, 13, 17, 49, 7E, 1E9 8 340 143 23 23 100 E9 deficient, squarefree, sphenic, composite
1EX 1, 2, E, 11, 1X, 22, EE, 1EX 8 360 162 22 22 X0 11X deficient, squarefree, sphenic, composite
1EE 1, 7, 35, 1EE 4 240 41 40 40 180 3E deficient, squarefree, semiprime, composite
200 1, 2, 3, 4, 6, 8, 9, 10, 14, 16, 20, 28, 30, 40, 60, 80, 100, 200 16 583 383 5 14 80 140 abundant, semiperfect, highly abundant, composite

201 to 300[]

n Divisors d(n) Οƒ(n) s(n) sopf(n) sopfr(n) Ο†(n) nβˆ’Ο†(n) Notes
201 1, 15, 201 3 217 16 15 2X 1X8 15 deficient, square, perfect power, semiprime, composite
202 1, 2, 5, X, 25, 4X, 101, 202 8 390 18X 30 30 94 12X deficient, squarefree, sphenic, composite
203 1, 3, 81, 203 4 288 85 84 84 140 83 deficient, squarefree, semiprime, composite
204 1, 2, 4, 61, 102, 204 6 372 16X 63 65 100 104 deficient, composite
205 1, 205 2 206 1 205 205 204 1 deficient, squarefree, prime
206 1, 2, 3, 6, 7, 12, 19, 36, 41, 82, 103, 206 10 490 286 10 17 70 156 abundant, semiperfect, composite
207 1, 5, 4E, 207 4 260 55 54 54 174 53 deficient, squarefree, semiprime, composite
208 1, 2, 4, 8, 31, 62, 104, 208 8 3E6 1XX 33 37 100 108 deficient, composite
209 1, 3, 9, E, 23, 29, 83, 209 8 340 133 12 18 130 99 deficient, composite
20X 1, 2, 105, 20X 4 316 108 107 107 104 106 deficient, squarefree, semiprime, composite
20E 1, 11, 1E, 20E 4 240 31 30 30 1X0 2E deficient, squarefree, semiprime, composite
210 1, 2, 3, 4, 5, 6, X, 10, 13, 18, 21, 26, 42, 50, 63, 84, 106, 210 16 604 3E4 X 15 68 164 abundant, semiperfect, highly abundant, composite
211 1, 7, 37, 211 4 254 43 42 42 190 41 deficient, squarefree, semiprime, composite
212 1, 2, 107, 212 4 320 10X 109 109 106 108 deficient, squarefree, semiprime, composite
213 1, 3, 85, 213 4 2X0 89 88 88 148 87 deficient, squarefree, semiprime, composite
214 1, 2, 4, 8, 14, 17, 32, 64, 108, 214 X 438 224 19 23 100 114 abundant, semiperfect, primitive abundant, composite
215 1, 5, 51, 215 4 270 57 56 56 180 55 deficient, squarefree, semiprime, composite
216 1, 2, 3, 6, 9, 15, 16, 2X, 43, 86, 109, 216 10 4X6 290 1X 21 80 156 abundant, semiperfect, composite
217 1, 217 2 218 1 217 217 216 1 deficient, squarefree, prime
218 1, 2, 4, 7, E, 12, 1X, 24, 38, 65, 10X, 218 10 480 264 18 1X X0 138 abundant, semiperfect, composite
219 1, 3, 87, 219 4 2X8 8E 8X 8X 150 89 deficient, squarefree, semiprime, composite
21X 1, 2, 5, X, 27, 52, 10E, 21X 8 400 1X2 32 32 X0 13X deficient, squarefree, sphenic, composite
21E 1, 21E 2 220 1 21E 21E 21X 1 deficient, squarefree, prime
220 1, 2, 3, 4, 6, 8, 10, 11, 20, 22, 33, 44, 66, 88, 110, 220 14 5X0 380 16 1X 80 160 abundant, semiperfect, composite
n Divisors d(n) Οƒ(n) s(n) sopf(n) sopfr(n) Ο†(n) nβˆ’Ο†(n) Notes
221 1, 221 2 222 1 221 221 220 1 deficient, squarefree, prime
222 1, 2, 111, 222 4 336 114 113 113 110 112 deficient, squarefree, semiprime, composite
223 1, 3, 5, 7, 9, 13, 19, 2E, 39, 53, 89, 223 10 440 219 13 16 100 123 deficient, composite
224 1, 2, 4, 67, 112, 224 6 3X8 184 69 6E 110 114 deficient, composite
225 1, 225 2 226 1 225 225 224 1 deficient, squarefree, prime
226 1, 2, 3, 6, 45, 8X, 113, 226 8 460 236 4X 4X 88 15X abundant, semiperfect, squarefree, sphenic, composite
227 1, E, 25, 227 4 260 35 34 34 1E4 33 deficient, squarefree, semiprime, composite
228 1, 2, 4, 5, 8, X, 14, 18, 28, 34, 54, 68, 114, 228 12 536 30X 7 15 X8 140 abundant, semiperfect, composite
229 1, 3, 8E, 229 4 300 93 92 92 158 91 deficient, squarefree, semiprime, composite
22X 1, 2, 7, 12, 1E, 3X, 115, 22X 8 400 192 28 28 E0 13X deficient, squarefree, sphenic, composite
22E 1, 15, 17, 22E 4 260 31 30 30 200 2E deficient, squarefree, semiprime, composite
230 1, 2, 3, 4, 6, 9, 10, 16, 23, 30, 46, 69, 90, 116, 230 13 5X7 377 5 14 90 160 abundant, square, perfect power, semiperfect, composite
231 1, 5, 11, 21, 55, 231 6 302 91 16 1E 180 71 deficient, composite
232 1, 2, 117, 232 4 350 11X 119 119 116 118 deficient, squarefree, semiprime, composite
233 1, 3, 91, 233 4 308 95 94 94 160 93 deficient, squarefree, semiprime, composite
234 1, 2, 4, 8, 35, 6X, 118, 234 8 446 212 37 3E 114 120 deficient, composite
235 1, 7, 3E, 235 4 280 47 46 46 1E0 45 deficient, squarefree, semiprime, composite
236 1, 2, 3, 5, 6, X, E, 13, 1X, 26, 29, 47, 56, 92, 119, 236 14 600 386 19 19 68 18X abundant, semiperfect, squarefree, composite
237 1, 237 2 238 1 237 237 236 1 deficient, squarefree, prime
238 1, 2, 4, 6E, 11X, 238 6 410 194 71 73 118 120 deficient, composite
239 1, 3, 9, 31, 93, 239 6 352 115 34 37 160 99 deficient, composite
23X 1, 2, 11E, 23X 4 360 122 121 121 11X 120 deficient, squarefree, semiprime, composite
23E 1, 5, 57, 23E 4 2X0 61 60 60 1X0 5E deficient, squarefree, semiprime, composite
240 1, 2, 3, 4, 6, 7, 8, 10, 12, 14, 19, 20, 24, 36, 40, 48, 70, 94, 120, 240 18 6X8 468 10 16 80 180 abundant, semiperfect, highly abundant, composite
n Divisors d(n) Οƒ(n) s(n) sopf(n) sopfr(n) Ο†(n) nβˆ’Ο†(n) Notes
241 1, 241 2 242 1 241 241 240 1 deficient, squarefree, prime
242 1, 2, 11, 22, 121, 242 6 399 157 13 24 110 132 deficient, composite
243 1, 3, 95, 243 4 320 99 98 98 168 97 deficient, squarefree, semiprime, composite
244 1, 2, 4, 5, X, 15, 18, 2X, 58, 71, 122, 244 10 530 2X8 20 22 X8 158 abundant, semiperfect, composite
245 1, E, 27, 245 4 280 37 36 36 210 35 deficient, squarefree, semiprime, composite
246 1, 2, 3, 6, 9, 16, 17, 32, 49, 96, 123, 246 10 550 306 20 23 90 176 abundant, semiperfect, composite
247 1, 7, 41, 247 4 294 49 7 19 206 41 deficient, perfect power, composite
248 1, 2, 4, 8, 37, 72, 124, 248 8 470 224 39 41 120 128 deficient, composite
249 1, 3, 5, 13, 1E, 59, 97, 249 8 400 173 27 27 128 121 deficient, squarefree, sphenic, composite
24X 1, 2, 125, 24X 4 376 128 127 127 124 126 deficient, squarefree, semiprime, composite
24E 1, 24E 2 250 1 24E 24E 24X 1 deficient, squarefree, prime
250 1, 2, 3, 4, 6, 10, 25, 4X, 73, 98, 126, 250 10 5X0 350 2X 30 94 178 abundant, semiperfect, composite
251 1, 251 2 252 1 251 251 250 1 deficient, squarefree, prime
252 1, 2, 5, 7, X, 12, 21, 2E, 42, 5X, 127, 252 10 520 28X 12 17 X0 172 abundant, semiperfect, composite
253 1, 3, 9, 11, 23, 33, 99, 253 8 3X8 155 14 1X 160 E3 deficient, composite
254 1, 2, 4, 8, E, 14, 1X, 28, 38, 74, 128, 254 10 530 298 11 19 114 140 abundant, semiperfect, composite
255 1, 255 2 256 1 255 255 254 1 deficient, squarefree, prime
256 1, 2, 3, 6, 4E, 9X, 129, 256 8 500 266 54 54 98 17X abundant, semiperfect, squarefree, sphenic, composite
257 1, 5, 5E, 257 4 300 65 64 64 1E4 63 deficient, squarefree, semiprime, composite
258 1, 2, 4, 75, 12X, 258 6 446 1XX 77 79 128 130 deficient, composite
259 1, 3, 7, 15, 19, 43, 9E, 259 8 400 163 23 23 140 119 deficient, squarefree, sphenic, composite
25X 1, 2, 12E, 25X 4 390 132 131 131 12X 130 deficient, squarefree, semiprime, composite
25E 1, 25E 2 260 1 25E 25E 25X 1 deficient, squarefree, prime
260 1, 2, 3, 4, 5, 6, 8, 9, X, 10, 13, 16, 18, 20, 26, 30, 34, 39, 50, 60, 76, X0, 130, 260 20 816 576 X 15 80 1X0 abundant, semiperfect, highly composite, highly abundant, superior highly composite, composite
n Divisors d(n) Οƒ(n) s(n) sopf(n) sopfr(n) Ο†(n) nβˆ’Ο†(n) Notes
261 1, 17, 261 3 279 18 17 32 246 17 deficient, square, perfect power, semiprime, composite
262 1, 2, 131, 262 4 396 134 133 133 130 132 deficient, squarefree, semiprime, composite
263 1, 3, E, 29, X1, 263 6 384 121 12 21 164 EE deficient, composite
264 1, 2, 4, 7, 11, 12, 22, 24, 44, 77, 132, 264 10 554 2E0 1X 20 100 164 abundant, semiperfect, composite
265 1, 5, 61, 265 4 310 67 66 66 200 65 deficient, squarefree, semiprime, composite
266 1, 2, 3, 6, 51, X2, 133, 266 8 520 276 56 56 X0 186 abundant, semiperfect, squarefree, sphenic, composite
267 1, 267 2 268 1 267 267 266 1 deficient, squarefree, prime
268 1, 2, 4, 8, 14, 1E, 3X, 78, 134, 268 X 520 274 21 27 128 140 abundant, semiperfect, primitive abundant, composite
269 1, 3, 9, 35, X3, 269 6 396 129 38 3E 180 X9 deficient, composite
26X 1, 2, 5, X, 31, 62, 135, 26X 8 490 222 38 38 100 16X deficient, squarefree, sphenic, composite
26E 1, 7, 45, 26E 4 300 51 50 50 220 4E deficient, squarefree, semiprime, composite
270 1, 2, 3, 4, 6, 10, 27, 52, 79, X4, 136, 270 10 628 378 30 32 X0 190 abundant, semiperfect, composite
271 1, 271 2 272 1 271 271 270 1 deficient, squarefree, prime
272 1, 2, E, 15, 1X, 2X, 137, 272 8 460 1XX 26 26 114 15X deficient, squarefree, sphenic, composite
273 1, 3, 5, 13, 21, 63, X5, 273 8 440 189 8 16 148 127 deficient, composite
274 1, 2, 4, 8, 3E, 7X, 138, 274 8 500 248 41 45 134 140 deficient, composite
275 1, 11, 25, 275 4 2E0 37 36 36 240 35 deficient, squarefree, semiprime, composite
276 1, 2, 3, 6, 7, 9, 12, 16, 19, 23, 36, 46, 53, X6, 139, 276 14 680 406 10 16 90 1X6 abundant, semiperfect, composite
277 1, 277 2 278 1 277 277 276 1 deficient, squarefree, prime
278 1, 2, 4, 5, X, 17, 18, 32, 64, 7E, 13X, 278 10 5X0 324 22 24 100 178 abundant, semiperfect, composite
279 1, 3, X7, 279 4 368 XE XX XX 190 X9 deficient, squarefree, semiprime, composite
27X 1, 2, 13E, 27X 4 400 142 141 141 13X 140 deficient, squarefree, semiprime, composite
27E 1, 27E 2 280 1 27E 27E 27X 1 deficient, squarefree, prime
280 1, 2, 3, 4, 6, 8, 10, 14, 20, 28, 40, 54, 80, X8, 140, 280 14 710 450 5 15 X8 194 abundant, semiperfect, composite
n Divisors d(n) Οƒ(n) s(n) sopf(n) sopfr(n) Ο†(n) nβˆ’Ο†(n) Notes
281 1, 5, 7, E, 2E, 47, 65, 281 8 400 13E 1E 1E 180 101 deficient, squarefree, sphenic, composite
282 1, 2, 141, 282 4 406 144 143 143 140 142 deficient, squarefree, semiprime, composite
283 1, 3, 9, 37, X9, 283 6 3E8 135 3X 41 190 E3 deficient, composite
284 1, 2, 4, 81, 142, 284 6 492 20X 83 85 140 144 deficient, composite
285 1, 285 2 286 1 285 285 284 1 deficient, squarefree, prime
286 1, 2, 3, 5, 6, X, 11, 13, 22, 26, 33, 55, 66, XX, 143, 286 14 700 436 1E 1E 80 206 abundant, semiperfect, squarefree, composite
287 1, 15, 1E, 287 4 300 35 34 34 254 33 deficient, squarefree, semiprime, composite
288 1, 2, 4, 7, 8, 12, 24, 41, 48, 82, 144, 288 10 5E3 327 9 18 120 168 abundant, semiperfect, composite
289 1, 3, XE, 289 4 380 E3 E2 E2 198 E1 deficient, squarefree, semiprime, composite
28X 1, 2, 145, 28X 4 416 148 147 147 144 146 deficient, squarefree, semiprime, composite
28E 1, 5, 67, 28E 4 340 71 70 70 220 6E deficient, squarefree, semiprime, composite
290 1, 2, 3, 4, 6, 9, E, 10, 16, 1X, 29, 30, 38, 56, 83, E0, 146, 290 16 770 4X0 14 19 X0 1E0 abundant, semiperfect, composite
291 1, 291 2 292 1 291 291 290 1 deficient, squarefree, prime
292 1, 2, 147, 292 4 420 14X 149 149 146 148 deficient, squarefree, semiprime, composite
293 1, 3, 7, 17, 19, 49, E1, 293 8 454 181 25 25 160 133 deficient, squarefree, sphenic, composite
294 1, 2, 4, 5, 8, X, 14, 18, 21, 34, 42, 68, 84, 148, 294 13 681 3X9 7 16 114 180 abundant, square, perfect power, semiperfect, composite
295 1, 295 2 296 1 295 295 294 1 deficient, squarefree, prime
296 1, 2, 3, 6, 57, E2, 149, 296 8 580 2X6 60 60 E0 1X6 abundant, semiperfect, squarefree, sphenic, composite
297 1, 11, 27, 297 4 314 39 38 38 260 37 deficient, squarefree, semiprime, composite
298 1, 2, 4, 85, 14X, 298 6 4E6 21X 87 89 148 150 deficient, composite
299 1, 3, 5, 9, 13, 23, 39, 69, E3, 299 X 506 229 8 15 160 139 deficient, composite
29X 1, 2, 7, 12, 25, 4X, 14E, 29X 8 500 222 32 32 120 17X deficient, squarefree, sphenic, composite
29E 1, E, 31, 29E 4 320 41 40 40 260 3E deficient, squarefree, semiprime, composite
2X0 1, 2, 3, 4, 6, 8, 10, 15, 20, 2X, 43, 58, 86, E4, 150, 2X0 14 760 480 1X 22 X8 1E4 abundant, semiperfect, composite
n Divisors d(n) Οƒ(n) s(n) sopf(n) sopfr(n) Ο†(n) nβˆ’Ο†(n) Notes
2X1 1, 2X1 2 2X2 1 2X1 2X1 2X0 1 deficient, squarefree, prime
2X2 1, 2, 5, X, 35, 6X, 151, 2X2 8 530 24X 40 40 114 18X deficient, squarefree, sphenic, composite
2X3 1, 3, E5, 2X3 4 3X0 E9 E8 E8 1X8 E7 deficient, squarefree, semiprime, composite
2X4 1, 2, 4, 87, 152, 2X4 6 508 224 89 8E 150 154 deficient, composite
2X5 1, 7, 4E, 2X5 4 340 57 56 56 250 55 deficient, squarefree, semiprime, composite
2X6 1, 2, 3, 6, 9, 16, 1E, 3X, 59, E6, 153, 2X6 10 660 376 24 27 E0 1E6 abundant, semiperfect, composite
2X7 1, 5, 6E, 2X7 4 360 75 74 74 234 73 deficient, squarefree, semiprime, composite
2X8 1, 2, 4, 8, 11, 14, 22, 28, 44, 88, 154, 2X8 10 616 32X 13 1E 140 168 abundant, semiperfect, composite
2X9 1, 3, E7, 2X9 4 3X8 EE EX EX 1E0 E9 deficient, squarefree, semiprime, composite
2XX 1, 2, E, 17, 1X, 32, 155, 2XX 8 500 212 28 28 130 17X deficient, squarefree, sphenic, composite
2XE 1, 2XE 2 2E0 1 2XE 2XE 2XX 1 deficient, squarefree, prime
2E0 1, 2, 3, 4, 5, 6, 7, X, 10, 12, 13, 18, 19, 24, 26, 2E, 36, 50, 5X, 70, 89, E8, 156, 2E0 20 940 650 15 17 80 230 abundant, semiperfect, highly abundant, composite
2E1 1, 2E1 2 2E2 1 2E1 2E1 2E0 1 deficient, squarefree, prime
2E2 1, 2, 157, 2E2 4 450 15X 159 159 156 158 deficient, squarefree, semiprime, composite
2E3 1, 3, 9, 3E, E9, 2E3 6 440 149 42 45 1E0 103 deficient, composite
2E4 1, 2, 4, 8, 45, 8X, 158, 2E4 8 576 282 47 4E 154 160 deficient, composite
2E5 1, 5, 15, 21, 71, 2E5 6 3X6 E1 1X 23 228 89 deficient, composite
2E6 1, 2, 3, 6, 5E, EX, 159, 2E6 8 600 306 64 64 E8 1EX abundant, semiperfect, squarefree, sphenic, composite
2E7 1, 7, 51, 2E7 4 354 59 58 58 260 57 deficient, squarefree, semiprime, composite
2E8 1, 2, 4, 8E, 15X, 2E8 6 530 234 91 93 158 160 deficient, composite
2E9 1, 3, E, 11, 29, 33, EE, 2E9 8 480 183 23 23 180 139 deficient, squarefree, sphenic, composite
2EX 1, 2, 5, X, 37, 72, 15E, 2EX 8 560 262 42 42 120 19X deficient, squarefree, sphenic, composite
2EE 1, 2EE 2 300 1 2EE 2EE 2EX 1 deficient, squarefree, prime
300 1, 2, 3, 4, 6, 8, 9, 10, 14, 16, 20, 23, 30, 40, 46, 60, 90, 100, 160, 300 18 874 574 5 15 100 200 abundant, semiperfect, composite

301 to 400[]

n Divisors d(n) Οƒ(n) s(n) sopf(n) sopfr(n) Ο†(n) nβˆ’Ο†(n) Notes
301 1, 301 2 302 1 301 301 300 1 deficient, squarefree, prime
302 1, 2, 7, 12, 27, 52, 161, 302 8 540 23X 34 34 130 192 deficient, squarefree, sphenic, composite
303 1, 3, 5, 13, 25, 73, 101, 303 8 500 1E9 31 31 168 157 deficient, squarefree, sphenic, composite
304 1, 2, 4, 91, 162, 304 6 542 23X 93 95 160 164 deficient, composite
305 1, 17, 1E, 305 4 340 37 36 36 290 35 deficient, squarefree, semiprime, composite
306 1, 2, 3, 6, 61, 102, 163, 306 8 620 316 66 66 100 206 abundant, semiperfect, squarefree, sphenic, composite
307 1, 307 2 308 1 307 307 306 1 deficient, squarefree, prime
308 1, 2, 4, 5, 8, X, E, 18, 1X, 34, 38, 47, 74, 92, 164, 308 14 760 454 16 1X 114 1E4 abundant, semiperfect, composite
309 1, 3, 7, 9, 19, 41, 53, 103, 309 9 519 210 X 18 190 139 deficient, square, perfect power, composite
30X 1, 2, 11, 15, 22, 2X, 165, 30X 8 530 222 28 28 140 18X deficient, squarefree, sphenic, composite
30E 1, 30E 2 310 1 30E 30E 30X 1 deficient, squarefree, prime
310 1, 2, 3, 4, 6, 10, 31, 62, 93, 104, 166, 310 10 748 438 36 38 100 210 abundant, semiperfect, composite
311 1, 5, 75, 311 4 390 7E 7X 7X 254 79 deficient, squarefree, semiprime, composite
312 1, 2, 167, 312 4 480 16X 169 169 166 168 deficient, squarefree, semiprime, composite
313 1, 3, 105, 313 4 420 109 108 108 208 107 deficient, squarefree, semiprime, composite
314 1, 2, 4, 7, 8, 12, 14, 24, 28, 48, 54, 94, 168, 314 12 708 3E4 9 17 140 194 abundant, semiperfect, composite
315 1, 315 2 316 1 315 315 314 1 deficient, squarefree, prime
316 1, 2, 3, 5, 6, 9, X, 13, 16, 21, 26, 39, 42, 63, 76, 106, 169, 316 16 849 533 X 16 X0 236 abundant, semiperfect, composite
317 1, E, 35, 317 4 360 45 44 44 294 43 deficient, squarefree, semiprime, composite
318 1, 2, 4, 95, 16X, 318 6 566 24X 97 99 168 170 deficient, composite
319 1, 3, 107, 319 4 428 10E 10X 10X 210 109 deficient, squarefree, semiprime, composite
31X 1, 2, 16E, 31X 4 490 172 171 171 16X 170 deficient, squarefree, semiprime, composite
31E 1, 5, 7, 11, 2E, 55, 77, 31E 8 480 161 21 21 200 11E deficient, squarefree, sphenic, composite
320 1, 2, 3, 4, 6, 8, 10, 17, 20, 32, 49, 64, 96, 108, 170, 320 14 840 520 20 24 100 220 abundant, semiperfect, composite
n Divisors d(n) Οƒ(n) s(n) sopf(n) sopfr(n) Ο†(n) nβˆ’Ο†(n) Notes
321 1, 321 2 322 1 321 321 320 1 deficient, squarefree, prime
322 1, 2, 171, 322 4 496 174 173 173 170 172 deficient, squarefree, semiprime, composite
323 1, 3, 9, 15, 23, 43, 109, 323 8 500 199 18 22 200 123 deficient, composite
324 1, 2, 4, 5, X, 18, 1E, 3X, 78, 97, 172, 324 10 700 398 26 28 128 1E8 abundant, semiperfect, composite
325 1, 325 2 326 1 325 325 324 1 deficient, squarefree, prime
326 1, 2, 3, 6, 7, E, 12, 19, 1X, 29, 36, 56, 65, 10X, 173, 326 14 800 496 1E 1E X0 246 abundant, semiperfect, squarefree, composite
327 1, 327 2 328 1 327 327 326 1 deficient, squarefree, prime
328 1, 2, 4, 8, 14, 25, 4X, 98, 174, 328 X 656 32X 27 31 168 180 abundant, semiperfect, primitive abundant, composite
329 1, 3, 5, 13, 27, 79, 10E, 329 8 540 213 33 33 180 169 deficient, squarefree, sphenic, composite
32X 1, 2, 175, 32X 4 4X6 178 177 177 174 176 deficient, squarefree, semiprime, composite
32E 1, 32E 2 330 1 32E 32E 32X 1 deficient, squarefree, prime
330 1, 2, 3, 4, 6, 9, 10, 11, 16, 22, 30, 33, 44, 66, 99, 110, 176, 330 16 8X2 572 16 1E 100 230 abundant, semiperfect, composite
331 1, 7, 57, 331 4 394 63 62 62 290 61 deficient, squarefree, semiprime, composite
332 1, 2, 5, X, 3E, 7X, 177, 332 8 600 28X 46 46 134 1EX deficient, squarefree, sphenic, composite
333 1, 3, 111, 333 4 448 115 114 114 220 113 deficient, squarefree, semiprime, composite
334 1, 2, 4, 8, 4E, 9X, 178, 334 8 630 2E8 51 55 174 180 deficient, composite
335 1, E, 37, 335 4 380 47 46 46 2E0 45 deficient, squarefree, semiprime, composite
336 1, 2, 3, 6, 67, 112, 179, 336 8 680 346 70 70 110 226 abundant, semiperfect, squarefree, sphenic, composite
337 1, 5, 17, 21, 7E, 337 6 438 101 20 25 260 97 deficient, composite
338 1, 2, 4, 7, 12, 15, 24, 2X, 58, 9E, 17X, 338 10 700 384 22 24 140 1E8 abundant, semiperfect, composite
339 1, 3, 9, 45, 113, 339 6 4X6 169 48 4E 220 119 deficient, composite
33X 1, 2, 17E, 33X 4 500 182 181 181 17X 180 deficient, squarefree, semiprime, composite
33E 1, 33E 2 340 1 33E 33E 33X 1 deficient, squarefree, prime
340 1, 2, 3, 4, 5, 6, 8, X, 10, 13, 14, 18, 20, 26, 28, 34, 40, 50, 68, 80, X0, 114, 180, 340 20 X60 720 X 16 X8 254 abundant, semiperfect, highly abundant, composite
n Divisors d(n) Οƒ(n) s(n) sopf(n) sopfr(n) Ο†(n) nβˆ’Ο†(n) Notes
341 1, 11, 31, 341 4 384 43 42 42 300 41 deficient, squarefree, semiprime, composite
342 1, 2, 181, 342 4 506 184 183 183 180 182 deficient, squarefree, semiprime, composite
343 1, 3, 7, 19, 1E, 59, 115, 343 8 540 1E9 29 29 1X0 163 deficient, squarefree, sphenic, composite
344 1, 2, 4, E, 1X, 38, X1, 182, 344 9 657 313 11 22 164 1X0 deficient, square, perfect power, composite
345 1, 5, 81, 345 4 410 87 86 86 280 85 deficient, squarefree, semiprime, composite
346 1, 2, 3, 6, 9, 16, 23, 46, 69, 116, 183, 346 10 770 426 5 15 116 230 abundant, semiperfect, composite
347 1, 347 2 348 1 347 347 346 1 deficient, squarefree, prime
348 1, 2, 4, 8, 51, X2, 184, 348 8 656 30X 53 57 180 188 deficient, composite
349 1, 3, 117, 349 4 468 11E 11X 11X 230 119 deficient, squarefree, semiprime, composite
34X 1, 2, 5, 7, X, 12, 2E, 41, 5X, 82, 185, 34X 10 716 388 12 19 120 22X abundant, semiperfect, composite
34E 1, 34E 2 350 1 34E 34E 34X 1 deficient, squarefree, prime
350 1, 2, 3, 4, 6, 10, 35, 6X, X3, 118, 186, 350 10 820 490 3X 40 114 238 abundant, semiperfect, composite
351 1, 15, 25, 351 4 390 3E 3X 3X 314 39 deficient, squarefree, semiprime, composite
352 1, 2, 11, 17, 22, 32, 187, 352 8 5X0 24X 2X 2X 160 1E2 deficient, squarefree, sphenic, composite
353 1, 3, 5, 9, E, 13, 29, 39, 47, 83, 119, 353 10 660 309 17 1X 180 193 deficient, composite
354 1, 2, 4, 8, 14, 27, 52, X4, 188, 354 X 6X8 354 29 33 180 194 perfect, semiperfect, composite
355 1, 7, 5E, 355 4 400 67 66 66 2E0 65 deficient, squarefree, semiprime, composite
356 1, 2, 3, 6, 6E, 11X, 189, 356 8 700 366 74 74 118 23X abundant, semiperfect, squarefree, sphenic, composite
357 1, 357 2 358 1 357 357 356 1 deficient, squarefree, prime
358 1, 2, 4, 5, X, 18, 21, 42, 84, X5, 18X, 358 10 770 414 7 17 148 210 abundant, semiperfect, composite
359 1, 3, 11E, 359 4 480 123 122 122 238 121 deficient, squarefree, semiprime, composite
35X 1, 2, 18E, 35X 4 530 192 191 191 18X 190 deficient, squarefree, semiprime, composite
35E 1, 35E 2 360 1 35E 35E 35X 1 deficient, squarefree, prime
360 1, 2, 3, 4, 6, 7, 8, 9, 10, 12, 16, 19, 20, 24, 30, 36, 48, 53, 60, 70, X6, 120, 190, 360 20 XX0 740 10 17 100 260 abundant, semiperfect, highly abundant, composite
n Divisors d(n) Οƒ(n) s(n) sopf(n) sopfr(n) Ο†(n) nβˆ’Ο†(n) Notes
361 1, 5, 85, 361 4 430 8E 8X 8X 294 89 deficient, squarefree, semiprime, composite
362 1, 2, E, 1X, 1E, 3X, 191, 362 8 600 25X 30 30 164 1EX deficient, squarefree, sphenic, composite
363 1, 3, 11, 33, 121, 363 6 510 169 14 25 220 143 deficient, composite
364 1, 2, 4, X7, 192, 364 6 628 284 X9 XE 190 194 deficient, composite
365 1, 365 2 366 1 365 365 364 1 deficient, squarefree, prime
366 1, 2, 3, 5, 6, X, 13, 15, 26, 2X, 43, 71, 86, 122, 193, 366 14 900 556 23 23 X8 27X abundant, semiperfect, squarefree, composite
367 1, 7, 61, 367 4 414 69 68 68 300 67 deficient, squarefree, semiprime, composite
368 1, 2, 4, 8, 14, 28, 54, X8, 194, 368 X 713 367 2 16 194 194 deficient, perfect power, composite
369 1, 3, 9, 17, 23, 49, 123, 369 8 568 1EE 1X 24 230 139 deficient, composite
36X 1, 2, 195, 36X 4 546 198 197 197 194 196 deficient, squarefree, semiprime, composite
36E 1, 5, 87, 36E 4 440 91 90 90 2X0 8E deficient, squarefree, semiprime, composite
370 1, 2, 3, 4, 6, 10, 37, 72, X9, 124, 196, 370 10 868 4E8 40 42 120 250 abundant, semiperfect, composite
371 1, E, 3E, 371 4 400 4E 4X 4X 324 49 deficient, squarefree, semiprime, composite
372 1, 2, 7, 12, 31, 62, 197, 372 8 640 28X 3X 3X 160 212 deficient, squarefree, sphenic, composite
373 1, 3, 125, 373 4 4X0 129 128 128 248 127 deficient, squarefree, semiprime, composite
374 1, 2, 4, 5, 8, X, 11, 18, 22, 34, 44, 55, 88, XX, 198, 374 14 890 518 18 20 140 234 abundant, semiperfect, composite
375 1, 375 2 376 1 375 375 374 1 deficient, squarefree, prime
376 1, 2, 3, 6, 9, 16, 25, 4X, 73, 126, 199, 376 10 816 460 2X 31 120 256 abundant, semiperfect, composite
377 1, 377 2 378 1 377 377 376 1 deficient, squarefree, prime
378 1, 2, 4, XE, 19X, 378 6 650 294 E1 E3 198 1X0 deficient, composite
379 1, 3, 5, 7, 13, 19, 21, 2E, 63, 89, 127, 379 10 6X8 32E 13 18 180 1E9 deficient, composite
37X 1, 2, 19E, 37X 4 560 1X2 1X1 1X1 19X 1X0 deficient, squarefree, semiprime, composite
37E 1, 15, 27, 37E 4 400 41 40 40 340 3E deficient, squarefree, semiprime, composite
380 1, 2, 3, 4, 6, 8, E, 10, 14, 1X, 20, 29, 38, 40, 56, 74, E0, 128, 1X0, 380 18 X40 680 14 1X 114 268 abundant, semiperfect, composite
n Divisors d(n) Οƒ(n) s(n) sopf(n) sopfr(n) Ο†(n) nβˆ’Ο†(n) Notes
381 1, 1E, 381 3 3X1 20 1E 3X 362 1E deficient, square, perfect power, semiprime, composite
382 1, 2, 5, X, 45, 8X, 1X1, 382 8 690 30X 50 50 154 22X deficient, squarefree, sphenic, composite
383 1, 3, 9, 4E, 129, 383 6 550 189 52 55 250 133 deficient, composite
384 1, 2, 4, 7, 12, 17, 24, 32, 64, E1, 1X2, 384 10 794 410 24 26 160 224 abundant, semiperfect, composite
385 1, 11, 35, 385 4 410 47 46 46 340 45 deficient, squarefree, semiprime, composite
386 1, 2, 3, 6, 75, 12X, 1X3, 386 8 760 396 7X 7X 128 25X abundant, semiperfect, squarefree, sphenic, composite
387 1, 5, 8E, 387 4 460 95 94 94 2E4 93 deficient, squarefree, semiprime, composite
388 1, 2, 4, 8, 57, E2, 1X4, 388 8 710 344 59 61 1X0 1X8 deficient, composite
389 1, 3, 12E, 389 4 500 133 132 132 258 131 deficient, squarefree, semiprime, composite
38X 1, 2, 1X5, 38X 4 576 1X8 1X7 1X7 1X4 1X6 deficient, squarefree, semiprime, composite
38E 1, 7, E, 41, 65, 38E 6 490 101 16 21 2E0 9E deficient, composite
390 1, 2, 3, 4, 5, 6, 9, X, 10, 13, 16, 18, 23, 26, 30, 39, 46, 50, 76, 90, E3, 130, 1X6, 390 20 E80 7E0 X 16 100 290 abundant, semiperfect, highly abundant, composite
391 1, 391 2 392 1 391 391 390 1 deficient, squarefree, prime
392 1, 2, 1X7, 392 4 580 1XX 1X9 1X9 1X6 1X8 deficient, squarefree, semiprime, composite
393 1, 3, 131, 393 4 508 135 134 134 260 133 deficient, squarefree, semiprime, composite
394 1, 2, 4, 8, 14, 15, 28, 2X, 58, E4, 1X8, 394 10 7X6 412 17 23 194 200 abundant, semiperfect, composite
395 1, 5, 91, 395 4 470 97 96 96 300 95 deficient, squarefree, semiprime, composite
396 1, 2, 3, 6, 7, 11, 12, 19, 22, 33, 36, 66, 77, 132, 1X9, 396 14 940 566 21 21 100 296 abundant, semiperfect, squarefree, composite
397 1, 397 2 398 1 397 397 396 1 deficient, squarefree, prime
398 1, 2, 4, E5, 1XX, 398 6 686 2XX E7 E9 1X8 1E0 deficient, composite
399 1, 3, 9, 51, 133, 399 6 572 195 54 57 260 139 deficient, composite
39X 1, 2, 5, X, E, 1X, 21, 42, 47, 92, 1XE, 39X 10 790 3E2 16 1E 148 252 abundant, semiperfect, primitive abundant, composite
39E 1, 17, 25, 39E 4 420 41 40 40 360 3E deficient, squarefree, semiprime, composite
3X0 1, 2, 3, 4, 6, 8, 10, 1E, 20, 3X, 59, 78, E6, 134, 1E0, 3X0 14 X00 620 24 28 128 274 abundant, semiperfect, composite
n Divisors d(n) Οƒ(n) s(n) sopf(n) sopfr(n) Ο†(n) nβˆ’Ο†(n) Notes
3X1 1, 7, 67, 3X1 4 454 73 72 72 330 71 deficient, squarefree, semiprime, composite
3X2 1, 2, 1E1, 3X2 4 596 1E4 1E3 1E3 1E0 1E2 deficient, squarefree, semiprime, composite
3X3 1, 3, 5, 13, 31, 93, 135, 3X3 8 640 259 39 39 200 1X3 deficient, squarefree, sphenic, composite
3X4 1, 2, 4, E7, 1E2, 3X4 6 698 2E4 E9 EE 1E0 1E4 deficient, composite
3X5 1, 3X5 2 3X6 1 3X5 3X5 3X4 1 deficient, squarefree, prime
3X6 1, 2, 3, 6, 9, 16, 27, 52, 79, 136, 1E3, 3X6 10 880 496 30 33 130 276 abundant, semiperfect, composite
3X7 1, 11, 37, 3X7 4 434 49 48 48 360 47 deficient, squarefree, semiprime, composite
3X8 1, 2, 4, 5, 7, 8, X, 12, 14, 18, 24, 2E, 34, 48, 5X, 68, 94, E8, 1E4, 3X8 18 X40 654 12 18 140 268 abundant, semiperfect, composite
3X9 1, 3, E, 15, 29, 43, 137, 3X9 8 600 213 27 27 228 181 deficient, squarefree, sphenic, composite
3XX 1, 2, 1E5, 3XX 4 5X6 1E8 1E7 1E7 1E4 1E6 deficient, squarefree, semiprime, composite
3XE 1, 3XE 2 3E0 1 3XE 3XE 3XX 1 deficient, squarefree, prime
3E0 1, 2, 3, 4, 6, 10, 3E, 7X, E9, 138, 1E6, 3E0 10 940 550 44 46 134 278 abundant, semiperfect, composite
3E1 1, 5, 95, 3E1 4 490 9E 9X 9X 314 99 deficient, squarefree, semiprime, composite
3E2 1, 2, 1E7, 3E2 4 5E0 1EX 1E9 1E9 1E6 1E8 deficient, squarefree, semiprime, composite
3E3 1, 3, 7, 9, 19, 23, 53, 69, 139, 3E3 X 688 295 X 17 230 183 deficient, composite
3E4 1, 2, 4, 8, 5E, EX, 1E8, 3E4 8 760 368 61 65 1E4 200 deficient, composite
3E5 1, 3E5 2 3E6 1 3E5 3E5 3E4 1 deficient, squarefree, prime
3E6 1, 2, 3, 5, 6, X, 13, 17, 26, 32, 49, 7E, 96, 13X, 1E9, 3E6 14 X00 606 25 25 100 2E6 abundant, semiperfect, squarefree, composite
3E7 1, 3E7 2 3E8 1 3E7 3E7 3E6 1 deficient, squarefree, prime
3E8 1, 2, 4, E, 11, 1X, 22, 38, 44, EE, 1EX, 3E8 10 820 424 22 24 180 238 abundant, semiperfect, primitive abundant, composite
3E9 1, 3, 13E, 3E9 4 540 143 142 142 278 141 deficient, squarefree, semiprime, composite
3EX 1, 2, 7, 12, 35, 6X, 1EE, 3EX 8 700 302 42 42 180 23X deficient, squarefree, sphenic, composite
3EE 1, 5, 1E, 21, 97, 3EE 6 520 121 24 29 308 E3 deficient, composite
400 1, 2, 3, 4, 6, 8, 9, 10, 14, 16, 20, 28, 30, 40, 54, 60, 80, 100, 140, 200, 400 19 E57 757 5 16 140 280 abundant, square, perfect power, semiperfect, composite

401 to 500[]

n Divisors d(n) Οƒ(n) s(n) sopf(n) sopfr(n) Ο†(n) nβˆ’Ο†(n) Notes
401 1, 401 2 402 1 401 401 400 1 deficient, squarefree, prime
402 1, 2, 15, 2X, 201, 402 6 649 247 17 30 1X8 216 deficient, composite
403 1, 3, 141, 403 4 548 145 144 144 280 143 deficient, squarefree, semiprime, composite
404 1, 2, 4, 5, X, 18, 25, 4X, 98, 101, 202, 404 10 890 488 30 32 168 258 abundant, semiperfect, composite
405 1, 7, 6E, 405 4 480 77 76 76 350 75 deficient, squarefree, semiprime, composite
406 1, 2, 3, 6, 81, 142, 203, 406 8 820 416 86 86 140 286 abundant, semiperfect, squarefree, sphenic, composite
407 1, E, 45, 407 4 460 55 54 54 374 53 deficient, squarefree, semiprime, composite
408 1, 2, 4, 8, 61, 102, 204, 408 8 786 37X 63 67 200 208 deficient, composite
409 1, 3, 5, 9, 11, 13, 33, 39, 55, 99, 143, 409 10 770 363 19 20 200 209 deficient, composite
40X 1, 2, 205, 40X 4 616 208 207 207 204 206 deficient, squarefree, semiprime, composite
40E 1, 40E 2 410 1 40E 40E 40X 1 deficient, squarefree, prime
410 1, 2, 3, 4, 6, 7, 10, 12, 19, 24, 36, 41, 70, 82, 103, 144, 206, 410 16 E10 700 10 19 120 2E0 abundant, semiperfect, composite
411 1, 17, 27, 411 4 454 43 42 42 390 41 deficient, squarefree, semiprime, composite
412 1, 2, 5, X, 4E, 9X, 207, 412 8 760 34X 56 56 174 25X deficient, squarefree, sphenic, composite
413 1, 3, 145, 413 4 560 149 148 148 288 147 deficient, squarefree, semiprime, composite
414 1, 2, 4, 8, 14, 31, 62, 104, 208, 414 X 822 40X 33 39 200 214 deficient, composite
415 1, 415 2 416 1 415 415 414 1 deficient, squarefree, prime
416 1, 2, 3, 6, 9, E, 16, 1X, 23, 29, 46, 56, 83, 146, 209, 416 14 X00 5X6 14 1X 130 2X6 abundant, semiperfect, composite
417 1, 5, 7, 15, 2E, 71, 9E, 417 8 600 1X5 25 25 280 157 deficient, squarefree, sphenic, composite
418 1, 2, 4, 105, 20X, 418 6 736 31X 107 109 208 210 deficient, composite
419 1, 3, 147, 419 4 568 14E 14X 14X 290 149 deficient, squarefree, semiprime, composite
41X 1, 2, 11, 1E, 22, 3X, 20E, 41X 8 700 2X2 32 32 1X0 23X deficient, squarefree, sphenic, composite
41E 1, 41E 2 420 1 41E 41E 41X 1 deficient, squarefree, prime
420 1, 2, 3, 4, 5, 6, 8, X, 10, 13, 18, 20, 21, 26, 34, 42, 50, 63, 84, X0, 106, 148, 210, 420 20 10E0 890 X 17 114 308 abundant, semiperfect, highly abundant, composite
n Divisors d(n) Οƒ(n) s(n) sopf(n) sopfr(n) Ο†(n) nβˆ’Ο†(n) Notes
421 1, 421 2 422 1 421 421 420 1 deficient, squarefree, prime
422 1, 2, 7, 12, 37, 72, 211, 422 8 740 31X 44 44 190 252 deficient, squarefree, sphenic, composite
423 1, 3, 9, 57, 149, 423 6 618 1E5 5X 61 290 153 deficient, composite
424 1, 2, 4, 107, 212, 424 6 748 324 109 10E 210 214 deficient, composite
425 1, 5, E, 47, X1, 425 6 566 141 14 23 308 119 deficient, composite
426 1, 2, 3, 6, 85, 14X, 213, 426 8 860 436 8X 8X 148 29X abundant, semiperfect, squarefree, sphenic, composite
427 1, 427 2 428 1 427 427 426 1 deficient, squarefree, prime
428 1, 2, 4, 8, 14, 17, 28, 32, 64, 108, 214, 428 10 890 464 19 25 200 228 abundant, semiperfect, composite
429 1, 3, 7, 19, 25, 73, 14E, 429 8 680 253 33 33 240 1X9 deficient, squarefree, sphenic, composite
42X 1, 2, 5, X, 51, X2, 215, 42X 8 790 362 58 58 180 26X deficient, squarefree, sphenic, composite
42E 1, 11, 3E, 42E 4 480 51 50 50 3X0 4E deficient, squarefree, semiprime, composite
430 1, 2, 3, 4, 6, 9, 10, 15, 16, 2X, 30, 43, 58, 86, 109, 150, 216, 430 16 E46 716 1X 23 140 2E0 abundant, semiperfect, composite
431 1, 431 2 432 1 431 431 430 1 deficient, squarefree, prime
432 1, 2, 217, 432 4 650 21X 219 219 216 218 deficient, squarefree, semiprime, composite
433 1, 3, 5, 13, 35, X3, 151, 433 8 700 289 41 41 228 207 deficient, squarefree, sphenic, composite
434 1, 2, 4, 7, 8, E, 12, 1X, 24, 38, 48, 65, 74, 10X, 218, 434 14 X00 588 18 20 180 274 abundant, semiperfect, composite
435 1, 435 2 436 1 435 435 434 1 deficient, squarefree, prime
436 1, 2, 3, 6, 87, 152, 219, 436 8 880 446 90 90 150 2X6 abundant, semiperfect, squarefree, sphenic, composite
437 1, 437 2 438 1 437 437 436 1 deficient, squarefree, prime
438 1, 2, 4, 5, X, 18, 27, 52, X4, 10E, 21X, 438 10 940 504 32 34 180 278 abundant, semiperfect, composite
439 1, 3, 9, 1E, 23, 59, 153, 439 8 680 243 22 28 290 169 deficient, composite
43X 1, 2, 21E, 43X 4 660 222 221 221 21X 220 deficient, squarefree, semiprime, composite
43E 1, 7, 75, 43E 4 500 81 80 80 380 7E deficient, squarefree, semiprime, composite
440 1, 2, 3, 4, 6, 8, 10, 11, 14, 20, 22, 33, 40, 44, 66, 88, 110, 154, 220, 440 18 1008 788 16 20 140 300 abundant, semiperfect, composite
n Divisors d(n) Οƒ(n) s(n) sopf(n) sopfr(n) Ο†(n) nβˆ’Ο†(n) Notes
441 1, 5, 21, X5, 441 5 551 110 5 18 358 X5 deficient, square, perfect power, composite
442 1, 2, 221, 442 4 666 224 223 223 220 222 deficient, squarefree, semiprime, composite
443 1, 3, E, 17, 29, 49, 155, 443 8 680 239 29 29 260 1X3 deficient, squarefree, sphenic, composite
444 1, 2, 4, 111, 222, 444 6 782 33X 113 115 220 224 deficient, composite
445 1, 15, 31, 445 4 490 47 46 46 400 45 deficient, squarefree, semiprime, composite
446 1, 2, 3, 5, 6, 7, 9, X, 12, 13, 16, 19, 26, 2E, 36, 39, 53, 5X, 76, 89, X6, 156, 223, 446 20 1100 876 15 18 100 346 abundant, semiperfect, highly abundant, composite
447 1, 447 2 448 1 447 447 446 1 deficient, squarefree, prime
448 1, 2, 4, 8, 67, 112, 224, 448 8 840 3E4 69 71 220 228 deficient, composite
449 1, 3, 157, 449 4 5X8 15E 15X 15X 2E0 159 deficient, squarefree, semiprime, composite
44X 1, 2, 225, 44X 4 676 228 227 227 224 226 deficient, squarefree, semiprime, composite
44E 1, 5, X7, 44E 4 540 E1 E0 E0 360 XE deficient, squarefree, semiprime, composite
450 1, 2, 3, 4, 6, 10, 45, 8X, 113, 158, 226, 450 10 X60 610 4X 50 154 2E8 abundant, semiperfect, composite
451 1, 7, 11, 41, 77, 451 6 566 115 18 23 360 E1 deficient, composite
452 1, 2, E, 1X, 25, 4X, 227, 452 8 760 30X 36 36 1E4 25X deficient, squarefree, sphenic, composite
453 1, 3, 9, 5E, 159, 453 6 660 209 62 65 2E0 163 deficient, composite
454 1, 2, 4, 5, 8, X, 14, 18, 28, 34, 54, 68, X8, 114, 228, 454 14 X76 622 7 17 194 280 abundant, semiperfect, composite
455 1, 455 2 456 1 455 455 454 1 deficient, squarefree, prime
456 1, 2, 3, 6, 8E, 15X, 229, 456 8 900 466 94 94 158 2EX abundant, semiperfect, squarefree, sphenic, composite
457 1, 457 2 458 1 457 457 456 1 deficient, squarefree, prime
458 1, 2, 4, 7, 12, 1E, 24, 3X, 78, 115, 22X, 458 10 940 4X4 28 2X 1X0 278 abundant, semiperfect, composite
459 1, 3, 5, 13, 37, X9, 15E, 459 8 740 2X3 43 43 240 219 deficient, squarefree, sphenic, composite
45X 1, 2, 15, 17, 2X, 32, 22E, 45X 8 760 302 32 32 200 25X deficient, squarefree, sphenic, composite
45E 1, 45E 2 460 1 45E 45E 45X 1 deficient, squarefree, prime
460 1, 2, 3, 4, 6, 8, 9, 10, 16, 20, 23, 30, 46, 60, 69, 90, 116, 160, 230, 460 18 1073 813 5 16 160 300 abundant, semiperfect, composite
n Divisors d(n) Οƒ(n) s(n) sopf(n) sopfr(n) Ο†(n) nβˆ’Ο†(n) Notes
461 1, E, 4E, 461 4 500 5E 5X 5X 404 59 deficient, squarefree, semiprime, composite
462 1, 2, 5, X, 11, 21, 22, 42, 55, XX, 231, 462 10 906 464 18 21 180 2X2 abundant, semiperfect, primitive abundant, composite
463 1, 3, 7, 19, 27, 79, 161, 463 8 714 271 35 35 260 203 deficient, squarefree, sphenic, composite
464 1, 2, 4, 117, 232, 464 6 7E8 354 119 11E 230 234 deficient, composite
465 1, 465 2 466 1 465 465 464 1 deficient, squarefree, prime
466 1, 2, 3, 6, 91, 162, 233, 466 8 920 476 96 96 160 306 abundant, semiperfect, squarefree, sphenic, composite
467 1, 5, XE, 467 4 560 E5 E4 E4 374 E3 deficient, squarefree, semiprime, composite
468 1, 2, 4, 8, 14, 35, 6X, 118, 234, 468 X 906 45X 37 41 228 240 deficient, composite
469 1, 3, 9, 61, 163, 469 6 682 215 64 67 300 169 deficient, composite
46X 1, 2, 7, 12, 3E, 7X, 235, 46X 8 800 352 48 48 1E0 27X deficient, squarefree, sphenic, composite
46E 1, 46E 2 470 1 46E 46E 46X 1 deficient, squarefree, prime
470 1, 2, 3, 4, 5, 6, X, E, 10, 13, 18, 1X, 26, 29, 38, 47, 50, 56, 92, E0, 119, 164, 236, 470 20 1200 950 19 1E 114 358 abundant, semiperfect, highly abundant, composite
471 1, 471 2 472 1 471 471 470 1 deficient, squarefree, prime
472 1, 2, 237, 472 4 6E0 23X 239 239 236 238 deficient, squarefree, semiprime, composite
473 1, 3, 11, 15, 33, 43, 165, 473 8 700 249 29 29 280 1E3 deficient, squarefree, sphenic, composite
474 1, 2, 4, 8, 6E, 11X, 238, 474 8 890 418 71 75 234 240 deficient, composite
475 1, 5, 7, 17, 2E, 7E, E1, 475 8 680 207 27 27 300 175 deficient, squarefree, sphenic, composite
476 1, 2, 3, 6, 9, 16, 31, 62, 93, 166, 239, 476 10 X36 580 36 39 160 316 abundant, semiperfect, composite
477 1, 1E, 25, 477 4 500 45 44 44 434 43 deficient, squarefree, semiprime, composite
478 1, 2, 4, 11E, 23X, 478 6 820 364 121 123 238 240 deficient, composite
479 1, 3, 167, 479 4 628 16E 16X 16X 310 169 deficient, squarefree, semiprime, composite
47X 1, 2, 5, X, 57, E2, 23E, 47X 8 860 3X2 62 62 1X0 29X deficient, squarefree, sphenic, composite
47E 1, E, 51, 47E 4 520 61 60 60 420 5E deficient, squarefree, semiprime, composite
480 1, 2, 3, 4, 6, 7, 8, 10, 12, 14, 19, 20, 24, 28, 36, 40, 48, 70, 80, 94, 120, 168, 240, 480 20 1200 940 10 18 140 340 abundant, semiperfect, composite
n Divisors d(n) Οƒ(n) s(n) sopf(n) sopfr(n) Ο†(n) nβˆ’Ο†(n) Notes
481 1, 481 2 482 1 481 481 480 1 deficient, squarefree, prime
482 1, 2, 241, 482 4 706 244 243 243 240 242 deficient, squarefree, semiprime, composite
483 1, 3, 5, 9, 13, 21, 23, 39, 63, E3, 169, 483 10 874 3E1 8 17 260 223 deficient, composite
484 1, 2, 4, 11, 22, 44, 121, 242, 484 9 8X9 425 13 26 220 264 deficient, square, perfect power, composite
485 1, 485 2 486 1 485 485 484 1 deficient, squarefree, prime
486 1, 2, 3, 6, 95, 16X, 243, 486 8 960 496 9X 9X 168 31X abundant, semiperfect, squarefree, sphenic, composite
487 1, 7, 81, 487 4 554 89 88 88 400 87 deficient, squarefree, semiprime, composite
488 1, 2, 4, 5, 8, X, 15, 18, 2X, 34, 58, 71, E4, 122, 244, 488 14 E30 664 20 24 194 2E4 abundant, semiperfect, composite
489 1, 3, 16E, 489 4 640 173 172 172 318 171 deficient, squarefree, semiprime, composite
48X 1, 2, E, 1X, 27, 52, 245, 48X 8 800 332 38 38 210 27X deficient, squarefree, sphenic, composite
48E 1, 48E 2 490 1 48E 48E 48X 1 deficient, squarefree, prime
490 1, 2, 3, 4, 6, 9, 10, 16, 17, 30, 32, 49, 64, 96, 123, 170, 246, 490 16 1078 7X8 20 25 160 330 abundant, semiperfect, composite
491 1, 5, E5, 491 4 590 EE EX EX 394 E9 deficient, squarefree, semiprime, composite
492 1, 2, 7, 12, 41, 82, 247, 492 8 840 36X 9 1E 206 288 deficient, composite
493 1, 3, 171, 493 4 648 175 174 174 320 173 deficient, squarefree, semiprime, composite
494 1, 2, 4, 8, 14, 37, 72, 124, 248, 494 X 958 484 39 43 240 254 deficient, composite
495 1, 11, 45, 495 4 530 57 56 56 440 55 deficient, squarefree, semiprime, composite
496 1, 2, 3, 5, 6, X, 13, 1E, 26, 3X, 59, 97, E6, 172, 249, 496 14 1000 726 29 29 128 36X abundant, semiperfect, squarefree, composite
497 1, 497 2 498 1 497 497 496 1 deficient, squarefree, prime
498 1, 2, 4, 125, 24X, 498 6 856 37X 127 129 248 250 deficient, composite
499 1, 3, 7, 9, E, 19, 29, 53, 65, 83, 173, 499 10 880 3X3 19 20 260 239 deficient, composite
49X 1, 2, 24E, 49X 4 730 252 251 251 24X 250 deficient, squarefree, semiprime, composite
49E 1, 5, E7, 49E 4 5X0 101 100 100 3X0 EE deficient, squarefree, semiprime, composite
4X0 1, 2, 3, 4, 6, 8, 10, 20, 25, 4X, 73, 98, 126, 174, 250, 4X0 14 1060 780 2X 32 168 334 abundant, semiperfect, composite
n Divisors d(n) Οƒ(n) s(n) sopf(n) sopfr(n) Ο†(n) nβˆ’Ο†(n) Notes
4X1 1, 15, 35, 4X1 4 530 4E 4X 4X 454 49 deficient, squarefree, semiprime, composite
4X2 1, 2, 251, 4X2 4 736 254 253 253 250 252 deficient, squarefree, semiprime, composite
4X3 1, 3, 175, 4X3 4 660 179 178 178 328 177 deficient, squarefree, semiprime, composite
4X4 1, 2, 4, 5, 7, X, 12, 18, 21, 24, 2E, 42, 5X, 84, E8, 127, 252, 4X4 16 1008 724 12 19 180 324 abundant, semiperfect, composite
4X5 1, 4X5 2 4X6 1 4X5 4X5 4X4 1 deficient, squarefree, prime
4X6 1, 2, 3, 6, 9, 11, 16, 22, 23, 33, 46, 66, 99, 176, 253, 4X6 14 E80 696 16 20 160 346 abundant, semiperfect, composite
4X7 1, 17, 31, 4X7 4 534 49 48 48 460 47 deficient, squarefree, semiprime, composite
4X8 1, 2, 4, 8, E, 14, 1X, 28, 38, 54, 74, 128, 254, 4X8 12 X70 584 11 1E 228 280 abundant, semiperfect, composite
4X9 1, 3, 5, 13, 3E, E9, 177, 4X9 8 800 313 47 47 268 241 deficient, squarefree, sphenic, composite
4XX 1, 2, 255, 4XX 4 746 258 257 257 254 256 deficient, squarefree, semiprime, composite
4XE 1, 7, 85, 4XE 4 580 91 90 90 420 8E deficient, squarefree, semiprime, composite
4E0 1, 2, 3, 4, 6, 10, 4E, 9X, 129, 178, 256, 4E0 10 E80 690 54 56 174 338 abundant, semiperfect, composite
4E1 1, 4E1 2 4E2 1 4E1 4E1 4E0 1 deficient, squarefree, prime
4E2 1, 2, 5, X, 5E, EX, 257, 4E2 8 900 40X 66 66 1E4 2EX deficient, squarefree, sphenic, composite
4E3 1, 3, 9, 67, 179, 4E3 6 728 235 6X 71 330 183 deficient, composite
4E4 1, 2, 4, 8, 75, 12X, 258, 4E4 8 946 452 77 7E 254 260 deficient, composite
4E5 1, 1E, 27, 4E5 4 540 47 46 46 470 45 deficient, squarefree, semiprime, composite
4E6 1, 2, 3, 6, 7, 12, 15, 19, 2X, 36, 43, 86, 9E, 17X, 259, 4E6 14 1000 706 25 25 140 376 abundant, semiperfect, squarefree, composite
4E7 1, 5, E, 11, 47, 55, EE, 4E7 8 700 205 25 25 340 177 deficient, squarefree, sphenic, composite
4E8 1, 2, 4, 12E, 25X, 4E8 6 890 394 131 133 258 260 deficient, composite
4E9 1, 3, 17E, 4E9 4 680 183 182 182 338 181 deficient, squarefree, semiprime, composite
4EX 1, 2, 25E, 4EX 4 760 262 261 261 25X 260 deficient, squarefree, semiprime, composite
4EE 1, 4EE 2 500 1 4EE 4EE 4EX 1 deficient, squarefree, prime
500 1, 2, 3, 4, 5, 6, 8, 9, X, 10, 13, 14, 16, 18, 20, 26, 30, 34, 39, 40, 50, 60, 68, 76, X0, 100, 130, 180, 260, 500 26 1496 E96 X 17 140 380 abundant, semiperfect, highly composite, highly abundant, composite

501 to 600[]

n Divisors d(n) Οƒ(n) s(n) sopf(n) sopfr(n) Ο†(n) nβˆ’Ο†(n) Notes
501 1, 7, 87, 501 4 594 93 92 92 430 91 deficient, squarefree, semiprime, composite
502 1, 2, 17, 32, 261, 502 6 7E3 2E1 19 34 246 278 deficient, composite
503 1, 3, 181, 503 4 688 185 184 184 340 183 deficient, squarefree, semiprime, composite
504 1, 2, 4, 131, 262, 504 6 8X2 39X 133 135 260 264 deficient, composite
505 1, 5, 21, 25, 101, 505 6 656 151 2X 33 3X8 119 deficient, composite
506 1, 2, 3, 6, E, 1X, 29, 56, X1, 182, 263, 506 10 E10 606 14 23 164 362 abundant, semiperfect, composite
507 1, 507 2 508 1 507 507 506 1 deficient, squarefree, prime
508 1, 2, 4, 7, 8, 11, 12, 22, 24, 44, 48, 77, 88, 132, 264, 508 14 E80 674 1X 22 200 308 abundant, semiperfect, composite
509 1, 3, 9, 23, 69, 183, 509 7 771 264 3 16 346 183 deficient, square, perfect power, composite
50X 1, 2, 5, X, 61, 102, 265, 50X 8 930 422 68 68 200 30X deficient, squarefree, sphenic, composite
50E 1, 15, 37, 50E 4 560 51 50 50 480 4E deficient, squarefree, semiprime, composite
510 1, 2, 3, 4, 6, 10, 51, X2, 133, 184, 266, 510 10 1008 6E8 56 58 180 350 abundant, semiperfect, composite
511 1, 511 2 512 1 511 511 510 1 deficient, squarefree, prime
512 1, 2, 267, 512 4 780 26X 269 269 266 268 deficient, squarefree, semiprime, composite
513 1, 3, 5, 7, 13, 19, 2E, 41, 89, 103, 185, 513 10 960 449 13 1X 240 293 deficient, composite
514 1, 2, 4, 8, 14, 1E, 28, 3X, 78, 134, 268, 514 10 X60 548 21 29 254 280 abundant, semiperfect, composite
515 1, E, 57, 515 4 580 67 66 66 470 65 deficient, squarefree, semiprime, composite
516 1, 2, 3, 6, 9, 16, 35, 6X, X3, 186, 269, 516 10 E46 630 3X 41 180 356 abundant, semiperfect, composite
517 1, 517 2 518 1 517 517 516 1 deficient, squarefree, prime
518 1, 2, 4, 5, X, 18, 31, 62, 104, 135, 26X, 518 10 E10 5E4 38 3X 200 318 abundant, semiperfect, composite
519 1, 3, 11, 17, 33, 49, 187, 519 8 794 277 2E 2E 300 219 deficient, squarefree, sphenic, composite
51X 1, 2, 7, 12, 45, 8X, 26E, 51X 8 900 3X2 52 52 220 2EX deficient, squarefree, sphenic, composite
51E 1, 51E 2 520 1 51E 51E 51X 1 deficient, squarefree, prime
520 1, 2, 3, 4, 6, 8, 10, 20, 27, 52, 79, X4, 136, 188, 270, 520 14 1140 820 30 34 180 360 abundant, semiperfect, composite
n Divisors d(n) Οƒ(n) s(n) sopf(n) sopfr(n) Ο†(n) nβˆ’Ο†(n) Notes
521 1, 5, 105, 521 4 630 10E 10X 10X 414 109 deficient, squarefree, semiprime, composite
522 1, 2, 271, 522 4 796 274 273 273 270 272 deficient, squarefree, semiprime, composite
523 1, 3, 9, 6E, 189, 523 6 770 249 72 75 350 193 deficient, composite
524 1, 2, 4, E, 15, 1X, 2X, 38, 58, 137, 272, 524 10 X60 538 26 28 228 2E8 abundant, semiperfect, primitive abundant, composite
525 1, 7, 8E, 525 4 600 97 96 96 450 95 deficient, squarefree, semiprime, composite
526 1, 2, 3, 5, 6, X, 13, 21, 26, 42, 63, X5, 106, 18X, 273, 526 14 1100 796 X 18 148 39X abundant, semiperfect, composite
527 1, 527 2 528 1 527 527 526 1 deficient, squarefree, prime
528 1, 2, 4, 8, 14, 3E, 7X, 138, 274, 528 X X40 514 41 47 268 280 deficient, composite
529 1, 3, 18E, 529 4 700 193 192 192 358 191 deficient, squarefree, semiprime, composite
52X 1, 2, 11, 22, 25, 4X, 275, 52X 8 890 362 38 38 240 2XX deficient, squarefree, sphenic, composite
52E 1, 5, 107, 52E 4 640 111 110 110 420 10E deficient, squarefree, semiprime, composite
530 1, 2, 3, 4, 6, 7, 9, 10, 12, 16, 19, 23, 24, 30, 36, 46, 53, 70, 90, X6, 139, 190, 276, 530 20 1368 X38 10 18 160 390 abundant, semiperfect, composite
531 1, 531 2 532 1 531 531 530 1 deficient, squarefree, prime
532 1, 2, 277, 532 4 7E0 27X 279 279 276 278 deficient, squarefree, semiprime, composite
533 1, 3, E, 1E, 29, 59, 191, 533 8 800 289 31 31 308 227 deficient, squarefree, sphenic, composite
534 1, 2, 4, 5, 8, X, 17, 18, 32, 34, 64, 7E, 108, 13X, 278, 534 14 1060 728 22 26 200 334 abundant, semiperfect, composite
535 1, 535 2 536 1 535 535 534 1 deficient, squarefree, prime
536 1, 2, 3, 6, X7, 192, 279, 536 8 X80 546 E0 E0 190 366 abundant, semiperfect, squarefree, sphenic, composite
537 1, 7, 91, 537 4 614 99 98 98 460 97 deficient, squarefree, semiprime, composite
538 1, 2, 4, 13E, 27X, 538 6 940 404 141 143 278 280 deficient, composite
539 1, 3, 5, 9, 13, 15, 39, 43, 71, 109, 193, 539 10 990 453 21 24 280 279 deficient, composite
53X 1, 2, 27E, 53X 4 800 282 281 281 27X 280 deficient, squarefree, semiprime, composite
53E 1, 11, 4E, 53E 4 5X0 61 60 60 4X0 5E deficient, squarefree, semiprime, composite
540 1, 2, 3, 4, 6, 8, 10, 14, 20, 28, 40, 54, 80, X8, 140, 194, 280, 540 16 1224 8X4 5 17 194 368 abundant, semiperfect, composite
n Divisors d(n) Οƒ(n) s(n) sopf(n) sopfr(n) Ο†(n) nβˆ’Ο†(n) Notes
541 1, 541 2 542 1 541 541 540 1 deficient, squarefree, prime
542 1, 2, 5, 7, X, E, 12, 1X, 2E, 47, 5X, 65, 92, 10X, 281, 542 14 1000 67X 21 21 180 382 abundant, semiperfect, squarefree, composite
543 1, 3, 195, 543 4 720 199 198 198 368 197 deficient, squarefree, semiprime, composite
544 1, 2, 4, 141, 282, 544 6 952 40X 143 145 280 284 deficient, composite
545 1, 545 2 546 1 545 545 544 1 deficient, squarefree, prime
546 1, 2, 3, 6, 9, 16, 37, 72, X9, 196, 283, 546 10 EE0 666 40 43 190 376 abundant, semiperfect, composite
547 1, 5, 21, 27, 10E, 547 6 6X8 161 30 35 420 127 deficient, composite
548 1, 2, 4, 8, 81, 142, 284, 548 8 X26 49X 83 87 280 288 deficient, composite
549 1, 3, 7, 19, 31, 93, 197, 549 8 854 307 3E 3E 300 249 deficient, squarefree, sphenic, composite
54X 1, 2, 285, 54X 4 816 288 287 287 284 286 deficient, squarefree, semiprime, composite
54E 1, 17, 35, 54E 4 5X0 51 50 50 500 4E deficient, squarefree, semiprime, composite
550 1, 2, 3, 4, 5, 6, X, 10, 11, 13, 18, 22, 26, 33, 44, 50, 55, 66, XX, 110, 143, 198, 286, 550 20 1440 XE0 1E 21 140 410 abundant, semiperfect, composite
551 1, E, 5E, 551 4 600 6E 6X 6X 4X4 69 deficient, squarefree, semiprime, composite
552 1, 2, 15, 1E, 2X, 3X, 287, 552 8 900 36X 36 36 254 2EX deficient, squarefree, sphenic, composite
553 1, 3, 9, 23, 25, 73, 199, 553 8 840 2X9 28 32 360 1E3 deficient, composite
554 1, 2, 4, 7, 8, 12, 14, 24, 41, 48, 82, 94, 144, 288, 554 13 1033 69E 9 1X 240 314 abundant, square, perfect power, semiperfect, composite
555 1, 5, 111, 555 4 670 117 116 116 440 115 deficient, squarefree, semiprime, composite
556 1, 2, 3, 6, XE, 19X, 289, 556 8 E00 566 E4 E4 198 37X abundant, semiperfect, squarefree, sphenic, composite
557 1, 557 2 558 1 557 557 556 1 deficient, squarefree, prime
558 1, 2, 4, 145, 28X, 558 6 976 41X 147 149 288 290 deficient, composite
559 1, 3, 19E, 559 4 740 1X3 1X2 1X2 378 1X1 deficient, squarefree, semiprime, composite
55X 1, 2, 5, X, 67, 112, 28E, 55X 8 X00 462 72 72 220 33X deficient, squarefree, sphenic, composite
55E 1, 7, 95, 55E 4 640 X1 X0 X0 480 9E deficient, squarefree, semiprime, composite
560 1, 2, 3, 4, 6, 8, 9, E, 10, 16, 1X, 20, 29, 30, 38, 56, 60, 74, 83, E0, 146, 1X0, 290, 560 20 1430 X90 14 1E 180 3X0 abundant, semiperfect, composite
n Divisors d(n) Οƒ(n) s(n) sopf(n) sopfr(n) Ο†(n) nβˆ’Ο†(n) Notes
561 1, 11, 51, 561 4 604 63 62 62 500 61 deficient, squarefree, semiprime, composite
562 1, 2, 291, 562 4 836 294 293 293 290 292 deficient, squarefree, semiprime, composite
563 1, 3, 5, 13, 45, 113, 1X1, 563 8 900 359 51 51 2X8 277 deficient, squarefree, sphenic, composite
564 1, 2, 4, 147, 292, 564 6 988 424 149 14E 290 294 deficient, composite
565 1, 565 2 566 1 565 565 564 1 deficient, squarefree, prime
566 1, 2, 3, 6, 7, 12, 17, 19, 32, 36, 49, 96, E1, 1X2, 293, 566 14 1140 796 27 27 160 406 abundant, semiperfect, squarefree, composite
567 1, 15, 3E, 567 4 600 55 54 54 514 53 deficient, squarefree, semiprime, composite
568 1, 2, 4, 5, 8, X, 14, 18, 21, 28, 34, 42, 68, 84, 114, 148, 294, 568 16 1169 801 7 18 228 340 abundant, semiperfect, composite
569 1, 3, 9, 75, 1X3, 569 6 816 269 78 7E 380 1X9 deficient, composite
56X 1, 2, 295, 56X 4 846 298 297 297 294 296 deficient, squarefree, semiprime, composite
56E 1, E, 61, 56E 4 620 71 70 70 500 6E deficient, squarefree, semiprime, composite
570 1, 2, 3, 4, 6, 10, 57, E2, 149, 1X4, 296, 570 10 1128 778 60 62 1X0 390 abundant, semiperfect, composite
571 1, 5, 7, 1E, 2E, 97, 115, 571 8 800 24E 2E 2E 380 1E1 deficient, squarefree, sphenic, composite
572 1, 2, 11, 22, 27, 52, 297, 572 8 940 38X 3X 3X 260 312 deficient, squarefree, sphenic, composite
573 1, 3, 1X5, 573 4 760 1X9 1X8 1X8 388 1X7 deficient, squarefree, semiprime, composite
574 1, 2, 4, 8, 85, 14X, 298, 574 8 X76 502 87 8E 294 2X0 deficient, composite
575 1, 575 2 576 1 575 575 574 1 deficient, squarefree, prime
576 1, 2, 3, 5, 6, 9, X, 13, 16, 23, 26, 39, 46, 69, 76, E3, 116, 1X6, 299, 576 18 1316 960 X 17 160 416 abundant, semiperfect, composite
577 1, 577 2 578 1 577 577 576 1 deficient, squarefree, prime
578 1, 2, 4, 7, 12, 24, 25, 4X, 98, 14E, 29X, 578 10 E80 604 32 34 240 338 abundant, semiperfect, composite
579 1, 3, 1X7, 579 4 768 1XE 1XX 1XX 390 1X9 deficient, squarefree, semiprime, composite
57X 1, 2, E, 1X, 31, 62, 29E, 57X 8 960 3X2 42 42 260 31X deficient, squarefree, sphenic, composite
57E 1, 5, 117, 57E 4 6X0 121 120 120 460 11E deficient, squarefree, semiprime, composite
580 1, 2, 3, 4, 6, 8, 10, 14, 15, 20, 2X, 40, 43, 58, 86, E4, 150, 1X8, 2X0, 580 18 1360 9X0 1X 24 194 3X8 abundant, semiperfect, composite
n Divisors d(n) Οƒ(n) s(n) sopf(n) sopfr(n) Ο†(n) nβˆ’Ο†(n) Notes
581 1, 17, 37, 581 4 614 53 52 52 530 51 deficient, squarefree, semiprime, composite
582 1, 2, 2X1, 582 4 866 2X4 2X3 2X3 2X0 2X2 deficient, squarefree, semiprime, composite
583 1, 3, 7, 9, 11, 19, 33, 53, 77, 99, 1X9, 583 10 X14 451 1E 22 300 283 deficient, composite
584 1, 2, 4, 5, X, 18, 35, 6X, 118, 151, 2X2, 584 10 1030 668 40 42 228 358 abundant, semiperfect, composite
585 1, 585 2 586 1 585 585 584 1 deficient, squarefree, prime
586 1, 2, 3, 6, E5, 1XX, 2X3, 586 8 E60 596 EX EX 1X8 39X abundant, semiperfect, squarefree, sphenic, composite
587 1, 587 2 588 1 587 587 586 1 deficient, squarefree, prime
588 1, 2, 4, 8, 87, 152, 2X4, 588 8 XX0 514 89 91 2X0 2X8 deficient, composite
589 1, 3, 5, E, 13, 21, 29, 47, 63, 119, 1XE, 589 10 X40 473 17 20 294 2E5 deficient, composite
58X 1, 2, 7, 12, 4E, 9X, 2X5, 58X 8 X00 432 58 58 250 33X deficient, squarefree, sphenic, composite
58E 1, 58E 2 590 1 58E 58E 58X 1 deficient, squarefree, prime
590 1, 2, 3, 4, 6, 9, 10, 16, 1E, 30, 3X, 59, 78, E6, 153, 1E0, 2X6, 590 16 1320 950 24 29 1X0 3E0 abundant, semiperfect, composite
591 1, 591 2 592 1 591 591 590 1 deficient, squarefree, prime
592 1, 2, 5, X, 6E, 11X, 2X7, 592 8 X60 48X 76 76 234 35X deficient, squarefree, sphenic, composite
593 1, 3, 1E1, 593 4 788 1E5 1E4 1E4 3X0 1E3 deficient, squarefree, semiprime, composite
594 1, 2, 4, 8, 11, 14, 22, 28, 44, 54, 88, 154, 2X8, 594 12 1042 66X 13 21 280 314 abundant, semiperfect, composite
595 1, 7, 15, 41, 9E, 595 6 716 141 20 27 480 115 deficient, composite
596 1, 2, 3, 6, E7, 1E2, 2X9, 596 8 E80 5X6 100 100 1E0 3X6 abundant, semiperfect, squarefree, sphenic, composite
597 1, 5, 11E, 597 4 700 125 124 124 474 123 deficient, squarefree, semiprime, composite
598 1, 2, 4, E, 17, 1X, 32, 38, 64, 155, 2XX, 598 10 E80 5X4 28 2X 260 338 abundant, weird, primitive abundant, composite
599 1, 3, 9, 23, 27, 79, 1E3, 599 8 8X8 30E 2X 34 390 209 deficient, composite
59X 1, 2, 2XE, 59X 4 890 2E2 2E1 2E1 2XX 2E0 deficient, squarefree, semiprime, composite
59E 1, 59E 2 5X0 1 59E 59E 59X 1 deficient, squarefree, prime
5X0 1, 2, 3, 4, 5, 6, 7, 8, X, 10, 12, 13, 18, 19, 20, 24, 26, 2E, 34, 36, 48, 50, 5X, 70, 89, X0, E8, 120, 156, 1E4, 2E0, 5X0 28 1800 1220 15 19 140 460 abundant, semiperfect, highly composite, highly abundant, composite
n Divisors d(n) Οƒ(n) s(n) sopf(n) sopfr(n) Ο†(n) nβˆ’Ο†(n) Notes
5X1 1, 25, 5X1 3 607 26 25 4X 578 25 deficient, square, perfect power, semiprime, composite
5X2 1, 2, 2E1, 5X2 4 896 2E4 2E3 2E3 2E0 2E2 deficient, squarefree, semiprime, composite
5X3 1, 3, 1E5, 5X3 4 7X0 1E9 1E8 1E8 3X8 1E7 deficient, squarefree, semiprime, composite
5X4 1, 2, 4, 157, 2E2, 5X4 6 X38 454 159 15E 2E0 2E4 deficient, composite
5X5 1, 5, 11, 55, 121, 5X5 6 776 191 16 27 440 165 deficient, composite
5X6 1, 2, 3, 6, 9, 16, 3E, 7X, E9, 1E6, 2E3, 5X6 10 1100 716 44 47 1E0 3E6 abundant, semiperfect, composite
5X7 1, 7, E, 65, X1, 5X7 6 748 161 16 25 470 137 deficient, composite
5X8 1, 2, 4, 8, 14, 45, 8X, 158, 2E4, 5X8 X E76 58X 47 51 2X8 300 deficient, composite
5X9 1, 3, 1E7, 5X9 4 7X8 1EE 1EX 1EX 3E0 1E9 deficient, squarefree, semiprime, composite
5XX 1, 2, 5, X, 15, 21, 2X, 42, 71, 122, 2E5, 5XX 10 E76 588 20 25 228 382 deficient, composite
5XE 1, 1E, 31, 5XE 4 640 51 50 50 560 4E deficient, squarefree, semiprime, composite
5E0 1, 2, 3, 4, 6, 10, 5E, EX, 159, 1E8, 2E6, 5E0 10 1200 810 64 66 1E4 3E8 abundant, semiperfect, composite
5E1 1, 5E1 2 5E2 1 5E1 5E1 5E0 1 deficient, squarefree, prime
5E2 1, 2, 7, 12, 51, X2, 2E7, 5E2 8 X40 44X 5X 5X 260 352 deficient, squarefree, sphenic, composite
5E3 1, 3, 5, 9, 13, 17, 39, 49, 7E, 123, 1E9, 5E3 10 XX0 4X9 23 26 300 2E3 deficient, composite
5E4 1, 2, 4, 8, 8E, 15X, 2E8, 5E4 8 E30 538 91 95 2E4 300 deficient, composite
5E5 1, 5E5 2 5E6 1 5E5 5E5 5E4 1 deficient, squarefree, prime
5E6 1, 2, 3, 6, E, 11, 1X, 22, 29, 33, 56, 66, EE, 1EX, 2E9, 5E6 14 1200 806 25 25 180 436 abundant, semiperfect, squarefree, composite
5E7 1, 5E7 2 5E8 1 5E7 5E7 5E6 1 deficient, squarefree, prime
5E8 1, 2, 4, 5, X, 18, 37, 72, 124, 15E, 2EX, 5E8 10 10X0 6X4 42 44 240 378 abundant, semiperfect, composite
5E9 1, 3, 7, 19, 35, X3, 1EE, 5E9 8 940 343 43 43 340 279 deficient, squarefree, sphenic, composite
5EX 1, 2, 2EE, 5EX 4 900 302 301 301 2EX 300 deficient, squarefree, semiprime, composite
5EE 1, 5EE 2 600 1 5EE 5EE 5EX 1 deficient, squarefree, prime
600 1, 2, 3, 4, 6, 8, 9, 10, 14, 16, 20, 23, 28, 30, 40, 46, 60, 80, 90, 100, 160, 200, 300, 600 20 1560 E60 5 17 200 400 abundant, semiperfect, composite

601 to 700[]

n Divisors d(n) Οƒ(n) s(n) sopf(n) sopfr(n) Ο†(n) nβˆ’Ο†(n) Notes
601 1, 5, 125, 601 4 730 12E 12X 12X 494 129 deficient, squarefree, semiprime, composite
602 1, 2, 301, 602 4 906 304 303 303 300 302 deficient, squarefree, semiprime, composite
603 1, 3, 15, 43, 201, 603 6 864 261 18 31 394 22E deficient, composite
604 1, 2, 4, 7, 12, 24, 27, 52, X4, 161, 302, 604 10 1054 650 34 36 260 364 abundant, semiperfect, composite
605 1, E, 67, 605 4 680 77 76 76 550 75 deficient, squarefree, semiprime, composite
606 1, 2, 3, 5, 6, X, 13, 25, 26, 4X, 73, 101, 126, 202, 303, 606 14 1300 8E6 33 33 168 45X abundant, semiperfect, squarefree, composite
607 1, 11, 57, 607 4 674 69 68 68 560 67 deficient, squarefree, semiprime, composite
608 1, 2, 4, 8, 91, 162, 304, 608 8 E56 54X 93 97 300 308 deficient, composite
609 1, 3, 9, 81, 203, 609 6 8X2 295 84 87 400 209 deficient, composite
60X 1, 2, 17, 1E, 32, 3X, 305, 60X 8 X00 3E2 38 38 290 33X deficient, squarefree, sphenic, composite
60E 1, 5, 7, 21, 2E, X5, 127, 60E 8 880 271 10 1X 420 1XE deficient, composite
610 1, 2, 3, 4, 6, 10, 61, 102, 163, 204, 306, 610 10 1248 838 66 68 200 410 abundant, semiperfect, composite
611 1, 611 2 612 1 611 611 610 1 deficient, squarefree, prime
612 1, 2, 307, 612 4 920 30X 309 309 306 308 deficient, squarefree, semiprime, composite
613 1, 3, 205, 613 4 820 209 208 208 408 207 deficient, squarefree, semiprime, composite
614 1, 2, 4, 5, 8, X, E, 14, 18, 1X, 34, 38, 47, 68, 74, 92, 128, 164, 308, 614 18 1360 948 16 20 228 3X8 abundant, semiperfect, composite
615 1, 615 2 616 1 615 615 614 1 deficient, squarefree, prime
616 1, 2, 3, 6, 7, 9, 12, 16, 19, 36, 41, 53, 82, X6, 103, 206, 309, 616 16 1353 939 10 1X 190 446 abundant, semiperfect, composite
617 1, 617 2 618 1 617 617 616 1 deficient, squarefree, prime
618 1, 2, 4, 11, 15, 22, 2X, 44, 58, 165, 30X, 618 10 1030 614 28 2X 280 358 deficient, composite
619 1, 3, 5, 13, 4E, 129, 207, 619 8 X00 3X3 57 57 328 2E1 deficient, squarefree, sphenic, composite
61X 1, 2, 30E, 61X 4 930 312 311 311 30X 310 deficient, squarefree, semiprime, composite
61E 1, 61E 2 620 1 61E 61E 61X 1 deficient, squarefree, prime
620 1, 2, 3, 4, 6, 8, 10, 20, 31, 62, 93, 104, 166, 208, 310, 620 14 13X0 980 36 3X 200 420 abundant, semiperfect, composite
n Divisors d(n) Οƒ(n) s(n) sopf(n) sopfr(n) Ο†(n) nβˆ’Ο†(n) Notes
621 1, 7, X7, 621 4 714 E3 E2 E2 530 E1 deficient, squarefree, semiprime, composite
622 1, 2, 5, X, 75, 12X, 311, 622 8 E30 50X 80 80 254 38X deficient, squarefree, sphenic, composite
623 1, 3, 9, E, 23, 29, 69, 83, 209, 623 X X10 3X9 12 1E 390 253 deficient, composite
624 1, 2, 4, 167, 312, 624 6 XX8 484 169 16E 310 314 deficient, composite
625 1, 17, 3E, 625 4 680 57 56 56 590 55 deficient, squarefree, semiprime, composite
626 1, 2, 3, 6, 105, 20X, 313, 626 8 1060 636 10X 10X 208 41X abundant, semiperfect, squarefree, sphenic, composite
627 1, 5, 12E, 627 4 760 135 134 134 4E4 133 deficient, squarefree, semiprime, composite
628 1, 2, 4, 7, 8, 12, 14, 24, 28, 48, 54, 94, X8, 168, 314, 628 14 1220 7E4 9 19 280 368 abundant, semiperfect, composite
629 1, 3, 11, 1E, 33, 59, 20E, 629 8 940 313 33 33 380 269 deficient, squarefree, sphenic, composite
62X 1, 2, 315, 62X 4 946 318 317 317 314 316 deficient, squarefree, semiprime, composite
62E 1, 25, 27, 62E 4 680 51 50 50 5X0 4E deficient, squarefree, semiprime, composite
630 1, 2, 3, 4, 5, 6, 9, X, 10, 13, 16, 18, 21, 26, 30, 39, 42, 50, 63, 76, 84, 106, 130, 169, 210, 316, 630 23 1771 1141 X 18 180 470 abundant, square, perfect power, semiperfect, composite
631 1, 15, 45, 631 4 690 5E 5X 5X 594 59 deficient, squarefree, semiprime, composite
632 1, 2, E, 1X, 35, 6X, 317, 632 8 X60 42X 46 46 294 35X deficient, squarefree, sphenic, composite
633 1, 3, 7, 19, 37, X9, 211, 633 8 994 361 45 45 360 293 deficient, squarefree, sphenic, composite
634 1, 2, 4, 8, 95, 16X, 318, 634 8 EX6 572 97 9E 314 320 deficient, composite
635 1, 5, 131, 635 4 770 137 136 136 500 135 deficient, squarefree, semiprime, composite
636 1, 2, 3, 6, 107, 212, 319, 636 8 1080 646 110 110 210 426 abundant, semiperfect, squarefree, sphenic, composite
637 1, 637 2 638 1 637 637 636 1 deficient, squarefree, prime
638 1, 2, 4, 16E, 31X, 638 6 E10 494 171 173 318 320 deficient, composite
639 1, 3, 9, 85, 213, 639 6 926 2X9 88 8E 420 219 deficient, composite
63X 1, 2, 5, 7, X, 11, 12, 22, 2E, 55, 5X, 77, XX, 132, 31E, 63X 14 1200 782 23 23 200 43X abundant, semiperfect, squarefree, composite
63E 1, 63E 2 640 1 63E 63E 63X 1 deficient, squarefree, prime
640 1, 2, 3, 4, 6, 8, 10, 14, 17, 20, 32, 40, 49, 64, 96, 108, 170, 214, 320, 640 18 1528 XX8 20 26 200 440 abundant, semiperfect, composite
n Divisors d(n) Οƒ(n) s(n) sopf(n) sopfr(n) Ο†(n) nβˆ’Ο†(n) Notes
641 1, E, 6E, 641 4 700 7E 7X 7X 584 79 deficient, squarefree, semiprime, composite
642 1, 2, 321, 642 4 966 324 323 323 320 322 deficient, squarefree, semiprime, composite
643 1, 3, 5, 13, 51, 133, 215, 643 8 X40 3E9 59 59 340 303 deficient, squarefree, sphenic, composite
644 1, 2, 4, 171, 322, 644 6 E22 49X 173 175 320 324 deficient, composite
645 1, 7, XE, 645 4 740 E7 E6 E6 550 E5 deficient, squarefree, semiprime, composite
646 1, 2, 3, 6, 9, 15, 16, 23, 2X, 43, 46, 86, 109, 216, 323, 646 14 1300 876 1X 24 200 446 abundant, semiperfect, composite
647 1, 647 2 648 1 647 647 646 1 deficient, squarefree, prime
648 1, 2, 4, 5, 8, X, 18, 1E, 34, 3X, 78, 97, 134, 172, 324, 648 14 1300 874 26 2X 254 3E4 abundant, semiperfect, composite
649 1, 3, 217, 649 4 868 21E 21X 21X 430 219 deficient, squarefree, semiprime, composite
64X 1, 2, 325, 64X 4 976 328 327 327 324 326 deficient, squarefree, semiprime, composite
64E 1, 11, 5E, 64E 4 700 71 70 70 5X0 6E deficient, squarefree, semiprime, composite
650 1, 2, 3, 4, 6, 7, E, 10, 12, 19, 1X, 24, 29, 36, 38, 56, 65, 70, E0, 10X, 173, 218, 326, 650 20 1680 1030 1E 21 180 490 abundant, semiperfect, composite
651 1, 5, 21, 31, 135, 651 6 822 191 36 3E 500 151 deficient, composite
652 1, 2, 327, 652 4 980 32X 329 329 326 328 deficient, squarefree, semiprime, composite
653 1, 3, 9, 87, 219, 653 6 948 2E5 8X 91 430 223 deficient, composite
654 1, 2, 4, 8, 14, 25, 28, 4X, 98, 174, 328, 654 10 1116 682 27 33 314 340 abundant, semiperfect, composite
655 1, 655 2 656 1 655 655 654 1 deficient, squarefree, prime
656 1, 2, 3, 5, 6, X, 13, 26, 27, 52, 79, 10E, 136, 21X, 329, 656 14 1400 966 35 35 180 496 abundant, semiperfect, squarefree, composite
657 1, 7, 17, 41, E1, 657 6 7E0 155 22 29 530 127 deficient, composite
658 1, 2, 4, 175, 32X, 658 6 E46 4XX 177 179 328 330 deficient, composite
659 1, 3, 21E, 659 4 880 223 222 222 438 221 deficient, squarefree, semiprime, composite
65X 1, 2, 32E, 65X 4 990 332 331 331 32X 330 deficient, squarefree, semiprime, composite
65E 1, 5, E, 15, 47, 71, 137, 65E 8 900 261 29 29 454 207 deficient, squarefree, sphenic, composite
660 1, 2, 3, 4, 6, 8, 9, 10, 11, 16, 20, 22, 30, 33, 44, 60, 66, 88, 99, 110, 176, 220, 330, 660 20 16E6 1056 16 21 200 460 abundant, semiperfect, composite
n Divisors d(n) Οƒ(n) s(n) sopf(n) sopfr(n) Ο†(n) nβˆ’Ο†(n) Notes
661 1, 661 2 662 1 661 661 660 1 deficient, squarefree, prime
662 1, 2, 7, 12, 57, E2, 331, 662 8 E40 49X 64 64 290 392 deficient, squarefree, sphenic, composite
663 1, 3, 221, 663 4 888 225 224 224 440 223 deficient, squarefree, semiprime, composite
664 1, 2, 4, 5, X, 18, 3E, 7X, 138, 177, 332, 664 10 1200 758 46 48 268 3E8 abundant, semiperfect, composite
665 1, 665 2 666 1 665 665 664 1 deficient, squarefree, prime
666 1, 2, 3, 6, 111, 222, 333, 666 8 1120 676 116 116 220 446 abundant, semiperfect, squarefree, sphenic, composite
667 1, 1E, 35, 667 4 700 55 54 54 614 53 deficient, squarefree, semiprime, composite
668 1, 2, 4, 8, 14, 4E, 9X, 178, 334, 668 X 10E0 644 51 57 328 340 deficient, composite
669 1, 3, 5, 7, 9, 13, 19, 23, 2E, 39, 53, 89, E3, 139, 223, 669 14 1140 693 13 19 300 369 abundant, semiperfect, primitive abundant, composite
66X 1, 2, E, 1X, 37, 72, 335, 66X 8 E00 452 48 48 2E0 37X deficient, squarefree, sphenic, composite
66E 1, 66E 2 670 1 66E 66E 66X 1 deficient, squarefree, prime
670 1, 2, 3, 4, 6, 10, 67, 112, 179, 224, 336, 670 10 1368 8E8 70 72 220 450 abundant, semiperfect, composite
671 1, 11, 61, 671 4 724 73 72 72 600 71 deficient, squarefree, semiprime, composite
672 1, 2, 5, X, 17, 21, 32, 42, 7E, 13X, 337, 672 10 10E0 63X 22 27 260 412 deficient, composite
673 1, 3, 225, 673 4 8X0 229 228 228 448 227 deficient, squarefree, semiprime, composite
674 1, 2, 4, 7, 8, 12, 15, 24, 2X, 48, 58, 9E, E4, 17X, 338, 674 14 1300 848 22 26 280 3E4 abundant, semiperfect, composite
675 1, 675 2 676 1 675 675 674 1 deficient, squarefree, prime
676 1, 2, 3, 6, 9, 16, 45, 8X, 113, 226, 339, 676 10 1276 800 4X 51 220 456 abundant, semiperfect, composite
677 1, 5, 13E, 677 4 800 145 144 144 534 143 deficient, squarefree, semiprime, composite
678 1, 2, 4, 17E, 33X, 678 6 E80 504 181 183 338 340 deficient, composite
679 1, 3, E, 25, 29, 73, 227, 679 8 X00 343 37 37 3X8 291 deficient, squarefree, sphenic, composite
67X 1, 2, 33E, 67X 4 X00 342 341 341 33X 340 deficient, squarefree, semiprime, composite
67E 1, 7, E5, 67E 4 780 101 100 100 580 EE deficient, squarefree, semiprime, composite
680 1, 2, 3, 4, 5, 6, 8, X, 10, 13, 14, 18, 20, 26, 28, 34, 40, 50, 54, 68, 80, X0, 114, 140, 180, 228, 340, 680 24 1920 1260 X 18 194 4X8 abundant, semiperfect, highly abundant, composite
n Divisors d(n) Οƒ(n) s(n) sopf(n) sopfr(n) Ο†(n) nβˆ’Ο†(n) Notes
681 1, 27, 681 3 6X9 28 27 52 656 27 deficient, square, perfect power, semiprime, composite
682 1, 2, 11, 22, 31, 62, 341, 682 8 E10 44X 44 44 300 382 deficient, squarefree, sphenic, composite
683 1, 3, 9, 8E, 229, 683 6 990 309 92 95 450 233 deficient, composite
684 1, 2, 4, 181, 342, 684 6 E92 50X 183 185 340 344 deficient, composite
685 1, 5, 141, 685 4 810 147 146 146 540 145 deficient, squarefree, semiprime, composite
686 1, 2, 3, 6, 7, 12, 19, 1E, 36, 3X, 59, E6, 115, 22X, 343, 686 14 1400 936 2E 2E 1X0 4X6 abundant, semiperfect, squarefree, composite
687 1, 687 2 688 1 687 687 686 1 deficient, squarefree, prime
688 1, 2, 4, 8, E, 1X, 38, 74, X1, 182, 344, 688 10 11X3 717 11 24 308 380 abundant, semiperfect, composite
689 1, 3, 15, 17, 43, 49, 22E, 689 8 X00 333 33 33 400 289 deficient, squarefree, sphenic, composite
68X 1, 2, 5, X, 81, 142, 345, 68X 8 1030 562 88 88 280 40X deficient, squarefree, sphenic, composite
68E 1, 68E 2 690 1 68E 68E 68X 1 deficient, squarefree, prime
690 1, 2, 3, 4, 6, 9, 10, 16, 23, 30, 46, 69, 90, 116, 183, 230, 346, 690 16 1584 XE4 5 17 230 460 abundant, semiperfect, composite
691 1, 7, E7, 691 4 794 103 102 102 590 101 deficient, squarefree, semiprime, composite
692 1, 2, 347, 692 4 X20 34X 349 349 346 348 deficient, squarefree, semiprime, composite
693 1, 3, 5, 11, 13, 21, 33, 55, 63, 143, 231, 693 10 1008 535 19 22 340 353 deficient, composite
694 1, 2, 4, 8, 14, 51, X2, 184, 348, 694 X 1142 66X 53 59 340 354 deficient, composite
695 1, 695 2 696 1 695 695 694 1 deficient, squarefree, prime
696 1, 2, 3, 6, 117, 232, 349, 696 8 1180 6X6 120 120 230 466 abundant, semiperfect, squarefree, sphenic, composite
697 1, E, 75, 697 4 760 85 84 84 614 83 deficient, squarefree, semiprime, composite
698 1, 2, 4, 5, 7, X, 12, 18, 24, 2E, 41, 5X, 82, E8, 144, 185, 34X, 698 16 1476 99X 12 1E 240 458 abundant, semiperfect, composite
699 1, 3, 9, 91, 233, 699 6 9E2 315 94 97 460 239 deficient, composite
69X 1, 2, 34E, 69X 4 X30 352 351 351 34X 350 deficient, squarefree, semiprime, composite
69E 1, 69E 2 6X0 1 69E 69E 69X 1 deficient, squarefree, prime
6X0 1, 2, 3, 4, 6, 8, 10, 20, 35, 6X, X3, 118, 186, 234, 350, 6X0 14 1560 X80 3X 42 228 474 abundant, semiperfect, composite
n Divisors d(n) Οƒ(n) s(n) sopf(n) sopfr(n) Ο†(n) nβˆ’Ο†(n) Notes
6X1 1, 5, 145, 6X1 4 830 14E 14X 14X 554 149 deficient, squarefree, semiprime, composite
6X2 1, 2, 15, 25, 2X, 4X, 351, 6X2 8 E30 44X 40 40 314 38X deficient, squarefree, sphenic, composite
6X3 1, 3, 7, 19, 3E, E9, 235, 6X3 8 X80 399 49 49 3X0 303 deficient, squarefree, sphenic, composite
6X4 1, 2, 4, 11, 17, 22, 32, 44, 64, 187, 352, 6X4 10 1174 690 2X 30 300 3X4 deficient, composite
6X5 1, 1E, 37, 6X5 4 740 57 56 56 650 55 deficient, squarefree, semiprime, composite
6X6 1, 2, 3, 5, 6, 9, X, E, 13, 16, 1X, 26, 29, 39, 47, 56, 76, 83, 92, 119, 146, 236, 353, 6X6 20 1760 1076 19 20 180 526 abundant, semiperfect, composite
6X7 1, 6X7 2 6X8 1 6X7 6X7 6X6 1 deficient, squarefree, prime
6X8 1, 2, 4, 8, 14, 27, 28, 52, X4, 188, 354, 6X8 10 1200 714 29 35 340 368 abundant, semiperfect, composite
6X9 1, 3, 237, 6X9 4 928 23E 23X 23X 470 239 deficient, squarefree, semiprime, composite
6XX 1, 2, 7, 12, 5E, EX, 355, 6XX 8 1000 512 68 68 2E0 3EX deficient, squarefree, sphenic, composite
6XE 1, 5, 147, 6XE 4 840 151 150 150 560 14E deficient, squarefree, semiprime, composite
6E0 1, 2, 3, 4, 6, 10, 6E, 11X, 189, 238, 356, 6E0 10 1440 950 74 76 234 478 abundant, semiperfect, composite
6E1 1, 6E1 2 6E2 1 6E1 6E1 6E0 1 deficient, squarefree, prime
6E2 1, 2, 357, 6E2 4 X50 35X 359 359 356 358 deficient, squarefree, semiprime, composite
6E3 1, 3, 9, 23, 31, 93, 239, 6E3 8 X68 375 34 3X 460 253 deficient, composite
6E4 1, 2, 4, 5, 8, X, 18, 21, 34, 42, 84, X5, 148, 18X, 358, 6E4 14 1430 938 7 19 294 420 abundant, perfect power, semiperfect, composite
6E5 1, 7, E, 11, 65, 77, EE, 6E5 8 940 247 27 27 500 1E5 deficient, squarefree, sphenic, composite
6E6 1, 2, 3, 6, 11E, 23X, 359, 6E6 8 1200 706 124 124 238 47X abundant, semiperfect, squarefree, sphenic, composite
6E7 1, 15, 4E, 6E7 4 760 65 64 64 654 63 deficient, squarefree, semiprime, composite
6E8 1, 2, 4, 18E, 35X, 6E8 6 1030 534 191 193 358 360 deficient, composite
6E9 1, 3, 5, 13, 57, 149, 23E, 6E9 8 E40 443 63 63 380 339 deficient, squarefree, sphenic, composite
6EX 1, 2, 35E, 6EX 4 X60 362 361 361 35X 360 deficient, squarefree, semiprime, composite
6EE 1, 17, 45, 6EE 4 760 61 60 60 660 5E deficient, squarefree, semiprime, composite
700 1, 2, 3, 4, 6, 7, 8, 9, 10, 12, 14, 16, 19, 20, 24, 30, 36, 40, 48, 53, 60, 70, 94, X6, 100, 120, 190, 240, 360, 700 26 1X48 1348 10 19 200 500 abundant, semiperfect, highly abundant, composite

701 to 800[]

n Divisors d(n) Οƒ(n) s(n) sopf(n) sopfr(n) Ο†(n) nβˆ’Ο†(n) Notes
701 1, 701 2 702 1 701 701 700 1 deficient, squarefree, prime
702 1, 2, 5, X, 85, 14X, 361, 702 8 1090 58X 90 90 294 42X deficient, squarefree, sphenic, composite
703 1, 3, 241, 703 4 948 245 244 244 480 243 deficient, squarefree, semiprime, composite
704 1, 2, 4, E, 1X, 1E, 38, 3X, 78, 191, 362, 704 10 1200 6E8 30 32 308 3E8 deficient, composite
705 1, 705 2 706 1 705 705 704 1 deficient, squarefree, prime
706 1, 2, 3, 6, 11, 22, 33, 66, 121, 242, 363, 706 10 1330 826 16 27 220 4X6 abundant, semiperfect, composite
707 1, 5, 7, 25, 2E, 101, 14E, 707 8 X00 2E5 35 35 480 247 deficient, squarefree, sphenic, composite
708 1, 2, 4, 8, X7, 192, 364, 708 8 1140 634 X9 E1 360 368 deficient, composite
709 1, 3, 9, 95, 243, 709 6 X36 329 98 9E 480 249 deficient, composite
70X 1, 2, 365, 70X 4 X76 368 367 367 364 366 deficient, squarefree, semiprime, composite
70E 1, 70E 2 710 1 70E 70E 70X 1 deficient, squarefree, prime
710 1, 2, 3, 4, 5, 6, X, 10, 13, 15, 18, 26, 2X, 43, 50, 58, 71, 86, 122, 150, 193, 244, 366, 710 20 1900 11E0 23 25 194 538 abundant, semiperfect, composite
711 1, 711 2 712 1 711 711 710 1 deficient, squarefree, prime
712 1, 2, 7, 12, 61, 102, 367, 712 8 1040 52X 6X 6X 300 412 deficient, squarefree, sphenic, composite
713 1, 3, E, 27, 29, 79, 245, 713 8 X80 369 39 39 420 2E3 deficient, squarefree, sphenic, composite
714 1, 2, 4, 8, 14, 28, 54, X8, 194, 368, 714 E 1227 713 2 18 368 368 deficient, square, perfect power, composite
715 1, 5, 21, 35, 151, 715 6 906 1E1 3X 43 568 169 deficient, composite
716 1, 2, 3, 6, 9, 16, 17, 23, 32, 46, 49, 96, 123, 246, 369, 716 14 1480 966 20 26 230 4X6 abundant, semiperfect, composite
717 1, 11, 67, 717 4 794 79 78 78 660 77 deficient, squarefree, semiprime, composite
718 1, 2, 4, 195, 36X, 718 6 1066 54X 197 199 368 370 deficient, composite
719 1, 3, 7, 19, 41, 103, 247, 719 8 E14 3E7 X 20 410 309 deficient, composite
71X 1, 2, 5, X, 87, 152, 36E, 71X 8 1100 5X2 92 92 2X0 43X deficient, squarefree, sphenic, composite
71E 1, 71E 2 720 1 71E 71E 71X 1 deficient, squarefree, prime
720 1, 2, 3, 4, 6, 8, 10, 20, 37, 72, X9, 124, 196, 248, 370, 720 14 1640 E20 40 44 240 4X0 abundant, semiperfect, composite
n Divisors d(n) Οƒ(n) s(n) sopf(n) sopfr(n) Ο†(n) nβˆ’Ο†(n) Notes
721 1, 721 2 722 1 721 721 720 1 deficient, squarefree, prime
722 1, 2, E, 1X, 3E, 7X, 371, 722 8 1000 49X 50 50 324 3EX deficient, squarefree, sphenic, composite
723 1, 3, 5, 9, 13, 1E, 39, 59, 97, 153, 249, 723 10 1100 599 27 2X 380 363 deficient, composite
724 1, 2, 4, 7, 12, 24, 31, 62, 104, 197, 372, 724 10 1294 770 3X 40 300 424 abundant, semiperfect, composite
725 1, 15, 51, 725 4 790 67 66 66 680 65 deficient, squarefree, semiprime, composite
726 1, 2, 3, 6, 125, 24X, 373, 726 8 1260 736 12X 12X 248 49X abundant, semiperfect, squarefree, sphenic, composite
727 1, 727 2 728 1 727 727 726 1 deficient, squarefree, prime
728 1, 2, 4, 5, 8, X, 11, 14, 18, 22, 34, 44, 55, 68, 88, XX, 154, 198, 374, 728 18 1610 XX4 18 22 280 468 abundant, semiperfect, composite
729 1, 3, 24E, 729 4 980 253 252 252 498 251 deficient, squarefree, semiprime, composite
72X 1, 2, 375, 72X 4 XX6 378 377 377 374 376 deficient, squarefree, semiprime, composite
72E 1, 7, 105, 72E 4 840 111 110 110 620 10E deficient, squarefree, semiprime, composite
730 1, 2, 3, 4, 6, 9, 10, 16, 25, 30, 4X, 73, 98, 126, 199, 250, 376, 730 16 16E6 E86 2X 33 240 4E0 abundant, semiperfect, composite
731 1, 5, E, 17, 47, 7E, 155, 731 8 X00 28E 2E 2E 500 231 deficient, squarefree, sphenic, composite
732 1, 2, 377, 732 4 XE0 37X 379 379 376 378 deficient, squarefree, semiprime, composite
733 1, 3, 251, 733 4 988 255 254 254 4X0 253 deficient, squarefree, semiprime, composite
734 1, 2, 4, 8, XE, 19X, 378, 734 8 1190 658 E1 E5 374 380 deficient, composite
735 1, 735 2 736 1 735 735 734 1 deficient, squarefree, prime
736 1, 2, 3, 5, 6, 7, X, 12, 13, 19, 21, 26, 2E, 36, 42, 5X, 63, 89, 106, 127, 156, 252, 379, 736 20 1880 1146 15 1X 180 576 abundant, semiperfect, composite
737 1, 737 2 738 1 737 737 736 1 deficient, squarefree, prime
738 1, 2, 4, 19E, 37X, 738 6 10X0 564 1X1 1X3 378 380 deficient, composite
739 1, 3, 9, 11, 23, 33, 69, 99, 253, 739 X E92 455 14 21 460 299 deficient, composite
73X 1, 2, 15, 27, 2X, 52, 37E, 73X 8 1000 482 42 42 340 3EX deficient, squarefree, sphenic, composite
73E 1, 5, 157, 73E 4 8X0 161 160 160 5X0 15E deficient, squarefree, semiprime, composite
740 1, 2, 3, 4, 6, 8, E, 10, 14, 1X, 20, 28, 29, 38, 40, 56, 74, 80, E0, 128, 1X0, 254, 380, 740 20 1900 1180 14 20 228 514 abundant, semiperfect, composite
n Divisors d(n) Οƒ(n) s(n) sopf(n) sopfr(n) Ο†(n) nβˆ’Ο†(n) Notes
741 1, 7, 107, 741 4 854 113 112 112 630 111 deficient, squarefree, semiprime, composite
742 1, 2, 1E, 3X, 381, 742 6 E63 421 21 40 362 3X0 deficient, composite
743 1, 3, 255, 743 4 9X0 259 258 258 4X8 257 deficient, squarefree, semiprime, composite
744 1, 2, 4, 5, X, 18, 45, 8X, 158, 1X1, 382, 744 10 1390 848 50 52 2X8 458 abundant, semiperfect, composite
745 1, 745 2 746 1 745 745 744 1 deficient, squarefree, prime
746 1, 2, 3, 6, 9, 16, 4E, 9X, 129, 256, 383, 746 10 1430 8X6 54 57 250 4E6 abundant, semiperfect, composite
747 1, 747 2 748 1 747 747 746 1 deficient, squarefree, prime
748 1, 2, 4, 7, 8, 12, 17, 24, 32, 48, 64, E1, 108, 1X2, 384, 748 14 1480 934 24 28 300 448 abundant, semiperfect, composite
749 1, 3, 5, 13, 5E, 159, 257, 749 8 1000 473 67 67 3X8 361 deficient, squarefree, sphenic, composite
74X 1, 2, 11, 22, 35, 6X, 385, 74X 8 1030 4X2 48 48 340 40X deficient, squarefree, sphenic, composite
74E 1, E, 81, 74E 4 820 91 90 90 680 8E deficient, squarefree, semiprime, composite
750 1, 2, 3, 4, 6, 10, 75, 12X, 1X3, 258, 386, 750 10 1560 X10 7X 80 254 4E8 abundant, semiperfect, composite
751 1, 751 2 752 1 751 751 750 1 deficient, squarefree, prime
752 1, 2, 5, X, 8E, 15X, 387, 752 8 1160 60X 96 96 2E4 45X deficient, squarefree, sphenic, composite
753 1, 3, 7, 9, 15, 19, 43, 53, 9E, 109, 259, 753 10 1100 569 23 26 400 353 deficient, composite
754 1, 2, 4, 8, 14, 57, E2, 1X4, 388, 754 X 1278 724 59 63 380 394 deficient, composite
755 1, 25, 31, 755 4 7E0 57 56 56 700 55 deficient, squarefree, semiprime, composite
756 1, 2, 3, 6, 12E, 25X, 389, 756 8 1300 766 134 134 258 4EX abundant, semiperfect, squarefree, sphenic, composite
757 1, 5, 21, 37, 15E, 757 6 958 201 40 45 5X0 177 deficient, composite
758 1, 2, 4, 1X5, 38X, 758 6 1116 57X 1X7 1X9 388 390 deficient, composite
759 1, 3, 25E, 759 4 X00 263 262 262 4E8 261 deficient, squarefree, semiprime, composite
75X 1, 2, 7, E, 12, 1X, 41, 65, 82, 10X, 38E, 75X 10 1230 692 18 23 2E0 46X deficient, composite
75E 1, 11, 6E, 75E 4 820 81 80 80 6X0 7E deficient, squarefree, semiprime, composite
760 1, 2, 3, 4, 5, 6, 8, 9, X, 10, 13, 16, 18, 20, 23, 26, 30, 34, 39, 46, 50, 60, 76, 90, X0, E3, 130, 160, 1X6, 260, 390, 760 28 2100 1560 X 18 200 560 abundant, semiperfect, highly abundant, composite
n Divisors d(n) Οƒ(n) s(n) sopf(n) sopfr(n) Ο†(n) nβˆ’Ο†(n) Notes
761 1, 1E, 3E, 761 4 800 5E 5X 5X 704 59 deficient, squarefree, semiprime, composite
762 1, 2, 391, 762 4 E36 394 393 393 390 392 deficient, squarefree, semiprime, composite
763 1, 3, 17, 49, 261, 763 6 X70 309 1X 35 490 293 deficient, composite
764 1, 2, 4, 1X7, 392, 764 6 1128 584 1X9 1XE 390 394 deficient, composite
765 1, 5, 7, 27, 2E, 10E, 161, 765 8 X80 317 37 37 500 265 deficient, squarefree, sphenic, composite
766 1, 2, 3, 6, 131, 262, 393, 766 8 1320 776 136 136 260 506 abundant, semiperfect, squarefree, sphenic, composite
767 1, 767 2 768 1 767 767 766 1 deficient, squarefree, prime
768 1, 2, 4, 8, 14, 15, 28, 2X, 54, 58, E4, 1X8, 394, 768 12 13X6 83X 17 25 368 400 abundant, semiperfect, composite
769 1, 3, 9, E, 29, 83, X1, 263, 769 9 1001 454 12 24 470 2E9 deficient, square, perfect power, composite
76X 1, 2, 5, X, 91, 162, 395, 76X 8 1190 622 98 98 300 46X deficient, squarefree, sphenic, composite
76E 1, 76E 2 770 1 76E 76E 76X 1 deficient, squarefree, prime
770 1, 2, 3, 4, 6, 7, 10, 11, 12, 19, 22, 24, 33, 36, 44, 66, 70, 77, 110, 132, 1X9, 264, 396, 770 20 1994 1224 21 23 200 570 abundant, semiperfect, composite
771 1, 771 2 772 1 771 771 770 1 deficient, squarefree, prime
772 1, 2, 397, 772 4 E50 39X 399 399 396 398 deficient, squarefree, semiprime, composite
773 1, 3, 5, 13, 61, 163, 265, 773 8 1040 489 69 69 400 373 deficient, squarefree, sphenic, composite
774 1, 2, 4, 8, E5, 1XX, 398, 774 8 1246 692 E7 EE 394 3X0 deficient, composite
775 1, 775 2 776 1 775 775 774 1 deficient, squarefree, prime
776 1, 2, 3, 6, 9, 16, 51, X2, 133, 266, 399, 776 10 1496 920 56 59 260 516 abundant, semiperfect, composite
777 1, 7, 111, 777 4 894 119 118 118 660 117 deficient, squarefree, semiprime, composite
778 1, 2, 4, 5, X, E, 18, 1X, 21, 38, 42, 47, 84, 92, 164, 1XE, 39X, 778 16 1610 X54 16 21 294 4X4 abundant, semiperfect, composite
779 1, 3, 267, 779 4 X28 26E 26X 26X 510 269 deficient, squarefree, semiprime, composite
77X 1, 2, 17, 25, 32, 4X, 39E, 77X 8 1060 4X2 42 42 360 41X deficient, squarefree, sphenic, composite
77E 1, 77E 2 780 1 77E 77E 77X 1 deficient, squarefree, prime
780 1, 2, 3, 4, 6, 8, 10, 14, 1E, 20, 3X, 40, 59, 78, E6, 134, 1E0, 268, 3X0, 780 18 1880 1100 24 2X 254 528 abundant, semiperfect, composite
n Divisors d(n) Οƒ(n) s(n) sopf(n) sopfr(n) Ο†(n) nβˆ’Ο†(n) Notes
781 1, 5, 11, 15, 55, 71, 165, 781 8 X60 29E 2E 2E 540 241 deficient, squarefree, sphenic, composite
782 1, 2, 7, 12, 67, 112, 3X1, 782 8 1140 57X 74 74 330 452 deficient, squarefree, sphenic, composite
783 1, 3, 9, 23, 35, X3, 269, 783 8 E80 3E9 38 42 500 283 deficient, composite
784 1, 2, 4, 1E1, 3X2, 784 6 1162 59X 1E3 1E5 3X0 3X4 deficient, composite
785 1, 785 2 786 1 785 785 784 1 deficient, squarefree, prime
786 1, 2, 3, 5, 6, X, 13, 26, 31, 62, 93, 135, 166, 26X, 3X3, 786 14 1700 E36 3E 3E 200 586 abundant, semiperfect, squarefree, composite
787 1, E, 85, 787 4 860 95 94 94 6E4 93 deficient, squarefree, semiprime, composite
788 1, 2, 4, 8, E7, 1E2, 3X4, 788 8 1270 6X4 E9 101 3X0 3X8 deficient, composite
789 1, 3, 7, 19, 45, 113, 26E, 789 8 1000 433 53 53 440 349 deficient, squarefree, sphenic, composite
78X 1, 2, 3X5, 78X 4 E76 3X8 3X7 3X7 3X4 3X6 deficient, squarefree, semiprime, composite
78E 1, 5, 167, 78E 4 940 171 170 170 620 16E deficient, squarefree, semiprime, composite
790 1, 2, 3, 4, 6, 9, 10, 16, 27, 30, 52, 79, X4, 136, 1E3, 270, 3X6, 790 16 1828 1058 30 35 260 530 abundant, semiperfect, composite
791 1, 791 2 792 1 791 791 790 1 deficient, squarefree, prime
792 1, 2, 11, 22, 37, 72, 3X7, 792 8 10X0 50X 4X 4X 360 432 deficient, squarefree, sphenic, composite
793 1, 3, 271, 793 4 X48 275 274 274 520 273 deficient, squarefree, semiprime, composite
794 1, 2, 4, 5, 7, 8, X, 12, 14, 18, 24, 28, 2E, 34, 48, 5X, 68, 94, E8, 114, 168, 1E4, 3X8, 794 20 1900 1128 12 1X 280 514 abundant, semiperfect, composite
795 1, 17, 4E, 795 4 840 67 66 66 730 65 deficient, squarefree, semiprime, composite
796 1, 2, 3, 6, E, 15, 1X, 29, 2X, 43, 56, 86, 137, 272, 3X9, 796 14 1600 X26 29 29 228 56X abundant, semiperfect, squarefree, composite
797 1, 797 2 798 1 797 797 796 1 deficient, squarefree, prime
798 1, 2, 4, 1E5, 3XX, 798 6 1186 5XX 1E7 1E9 3X8 3E0 deficient, composite
799 1, 3, 5, 9, 13, 21, 39, 63, X5, 169, 273, 799 10 1210 633 8 19 420 379 deficient, composite
79X 1, 2, 3XE, 79X 4 E90 3E2 3E1 3E1 3XX 3E0 deficient, squarefree, semiprime, composite
79E 1, 7, 1E, 41, 115, 79E 6 960 181 26 31 650 14E deficient, composite
7X0 1, 2, 3, 4, 6, 8, 10, 20, 3E, 7X, E9, 138, 1E6, 274, 3E0, 7X0 14 1800 1020 44 48 268 534 abundant, semiperfect, composite
n Divisors d(n) Οƒ(n) s(n) sopf(n) sopfr(n) Ο†(n) nβˆ’Ο†(n) Notes
7X1 1, 7X1 2 7X2 1 7X1 7X1 7X0 1 deficient, squarefree, prime
7X2 1, 2, 5, X, 95, 16X, 3E1, 7X2 8 1230 64X X0 X0 314 48X deficient, squarefree, sphenic, composite
7X3 1, 3, 11, 25, 33, 73, 275, 7X3 8 E80 399 39 39 480 323 deficient, squarefree, sphenic, composite
7X4 1, 2, 4, 1E7, 3E2, 7X4 6 1198 5E4 1E9 1EE 3E0 3E4 deficient, composite
7X5 1, E, 87, 7X5 4 880 97 96 96 710 95 deficient, squarefree, semiprime, composite
7X6 1, 2, 3, 6, 7, 9, 12, 16, 19, 23, 36, 46, 53, 69, X6, 116, 139, 276, 3E3, 7X6 18 1820 1036 10 19 230 576 abundant, semiperfect, composite
7X7 1, 5, 16E, 7X7 4 960 175 174 174 634 173 deficient, squarefree, semiprime, composite
7X8 1, 2, 4, 8, 14, 5E, EX, 1E8, 3E4, 7X8 X 1360 774 61 67 3X8 400 deficient, composite
7X9 1, 3, 277, 7X9 4 X68 27E 27X 27X 530 279 deficient, squarefree, semiprime, composite
7XX 1, 2, 3E5, 7XX 4 EX6 3E8 3E7 3E7 3E4 3E6 deficient, squarefree, semiprime, composite
7XE 1, 15, 57, 7XE 4 860 71 70 70 740 6E deficient, squarefree, semiprime, composite
7E0 1, 2, 3, 4, 5, 6, X, 10, 13, 17, 18, 26, 32, 49, 50, 64, 7E, 96, 13X, 170, 1E9, 278, 3E6, 7E0 20 1E40 1350 25 27 200 5E0 abundant, semiperfect, composite
7E1 1, 7, 117, 7E1 4 914 123 122 122 690 121 deficient, squarefree, semiprime, composite
7E2 1, 2, 3E7, 7E2 4 EE0 3EX 3E9 3E9 3E6 3E8 deficient, squarefree, semiprime, composite
7E3 1, 3, 9, X7, 279, 7E3 6 E68 375 XX E1 530 283 deficient, composite
7E4 1, 2, 4, 8, E, 11, 1X, 22, 38, 44, 74, 88, EE, 1EX, 3E8, 7E4 14 1560 968 22 26 340 474 abundant, semiperfect, composite
7E5 1, 5, 171, 7E5 4 970 177 176 176 640 175 deficient, squarefree, semiprime, composite
7E6 1, 2, 3, 6, 13E, 27X, 3E9, 7E6 8 1400 806 144 144 278 53X abundant, semiperfect, squarefree, sphenic, composite
7E7 1, 27, 31, 7E7 4 854 59 58 58 760 57 deficient, squarefree, semiprime, composite
7E8 1, 2, 4, 7, 12, 24, 35, 6X, 118, 1EE, 3EX, 7E8 10 1440 844 42 44 340 478 abundant, semiperfect, composite
7E9 1, 3, 27E, 7E9 4 X80 283 282 282 538 281 deficient, squarefree, semiprime, composite
7EX 1, 2, 5, X, 1E, 21, 3X, 42, 97, 172, 3EE, 7EX 10 1360 762 26 2E 308 4E2 deficient, composite
7EE 1, 7EE 2 800 1 7EE 7EE 7EX 1 deficient, squarefree, prime
800 1, 2, 3, 4, 6, 8, 9, 10, 14, 16, 20, 28, 30, 40, 54, 60, 80, X8, 100, 140, 200, 280, 400, 800 20 1E03 1303 5 18 280 540 abundant, semiperfect, composite

801 to 900[]

n Divisors d(n) Οƒ(n) s(n) sopf(n) sopfr(n) Ο†(n) nβˆ’Ο†(n) Notes
801 1, 801 2 802 1 801 801 800 1 deficient, squarefree, prime
802 1, 2, 401, 802 4 1006 404 403 403 400 402 deficient, squarefree, semiprime, composite
803 1, 3, 5, 7, E, 13, 19, 29, 2E, 47, 65, 89, 119, 173, 281, 803 14 1400 7E9 22 22 340 483 deficient, squarefree, composite
804 1, 2, 4, 15, 2X, 58, 201, 402, 804 9 12E1 6X9 17 32 394 430 deficient, square, perfect power, composite
805 1, 11, 75, 805 4 890 87 86 86 740 85 deficient, squarefree, semiprime, composite
806 1, 2, 3, 6, 141, 282, 403, 806 8 1420 816 146 146 280 546 abundant, semiperfect, squarefree, sphenic, composite
807 1, 17, 51, 807 4 874 69 68 68 760 67 deficient, squarefree, semiprime, composite
808 1, 2, 4, 5, 8, X, 18, 25, 34, 4X, 98, 101, 174, 202, 404, 808 14 1690 X84 30 34 314 4E4 abundant, semiperfect, composite
809 1, 3, 9, 23, 37, X9, 283, 809 8 1028 41E 3X 44 530 299 deficient, composite
80X 1, 2, 7, 12, 6E, 11X, 405, 80X 8 1200 5E2 78 78 350 47X deficient, squarefree, sphenic, composite
80E 1, 80E 2 810 1 80E 80E 80X 1 deficient, squarefree, prime
810 1, 2, 3, 4, 6, 10, 81, 142, 203, 284, 406, 810 10 1708 XE8 86 88 280 550 abundant, semiperfect, composite
811 1, 5, 175, 811 4 990 17E 17X 17X 654 179 deficient, squarefree, semiprime, composite
812 1, 2, E, 1X, 45, 8X, 407, 812 8 1160 54X 56 56 374 45X deficient, squarefree, sphenic, composite
813 1, 3, 285, 813 4 XX0 289 288 288 548 287 deficient, squarefree, semiprime, composite
814 1, 2, 4, 8, 14, 61, 102, 204, 408, 814 X 13E2 79X 63 69 400 414 deficient, composite
815 1, 7, 11E, 815 4 940 127 126 126 6E0 125 deficient, squarefree, semiprime, composite
816 1, 2, 3, 5, 6, 9, X, 11, 13, 16, 22, 26, 33, 39, 55, 66, 76, 99, XX, 143, 176, 286, 409, 816 20 1X90 1276 1E 22 200 616 abundant, semiperfect, composite
817 1, 817 2 818 1 817 817 816 1 deficient, squarefree, prime
818 1, 2, 4, 205, 40X, 818 6 1236 61X 207 209 408 410 deficient, composite
819 1, 3, 15, 1E, 43, 59, 287, 819 8 1000 3X3 37 37 4X8 331 deficient, squarefree, sphenic, composite
81X 1, 2, 40E, 81X 4 1030 412 411 411 40X 410 deficient, squarefree, semiprime, composite
81E 1, 5, 21, 3E, 177, 81E 6 X40 221 44 49 648 193 deficient, composite
820 1, 2, 3, 4, 6, 7, 8, 10, 12, 19, 20, 24, 36, 41, 48, 70, 82, 103, 120, 144, 206, 288, 410, 820 20 1E90 1370 10 1E 240 5X0 abundant, semiperfect, composite
n Divisors d(n) Οƒ(n) s(n) sopf(n) sopfr(n) Ο†(n) nβˆ’Ο†(n) Notes
821 1, E, 8E, 821 4 900 9E 9X 9X 744 99 deficient, squarefree, semiprime, composite
822 1, 2, 17, 27, 32, 52, 411, 822 8 1140 51X 44 44 390 452 deficient, squarefree, sphenic, composite
823 1, 3, 9, XE, 289, 823 6 EE0 389 E2 E5 550 293 deficient, composite
824 1, 2, 4, 5, X, 18, 4E, 9X, 178, 207, 412, 824 10 1560 938 56 58 328 4E8 abundant, semiperfect, composite
825 1, 825 2 826 1 825 825 824 1 deficient, squarefree, prime
826 1, 2, 3, 6, 145, 28X, 413, 826 8 1460 836 14X 14X 288 55X abundant, semiperfect, squarefree, sphenic, composite
827 1, 7, 11, 77, 121, 827 6 X20 1E5 18 29 660 187 deficient, composite
828 1, 2, 4, 8, 14, 28, 31, 62, 104, 208, 414, 828 10 1476 84X 33 3E 400 428 abundant, semiperfect, primitive abundant, composite
829 1, 3, 5, 13, 67, 179, 28E, 829 8 1140 513 73 73 440 3X9 deficient, squarefree, sphenic, composite
82X 1, 2, 415, 82X 4 1046 418 417 417 414 416 deficient, squarefree, semiprime, composite
82E 1, 82E 2 830 1 82E 82E 82X 1 deficient, squarefree, prime
830 1, 2, 3, 4, 6, 9, E, 10, 16, 1X, 23, 29, 30, 38, 46, 56, 83, 90, E0, 146, 209, 290, 416, 830 20 1E40 1310 14 20 260 590 abundant, semiperfect, composite
831 1, 25, 35, 831 4 890 5E 5X 5X 794 59 deficient, squarefree, semiprime, composite
832 1, 2, 5, 7, X, 12, 15, 2X, 2E, 5X, 71, 9E, 122, 17X, 417, 832 14 1600 98X 27 27 280 572 abundant, semiperfect, squarefree, composite
833 1, 3, 291, 833 4 E08 295 294 294 560 293 deficient, squarefree, semiprime, composite
834 1, 2, 4, 8, 105, 20X, 418, 834 8 1376 742 107 10E 414 420 deficient, composite
835 1, 835 2 836 1 835 835 834 1 deficient, squarefree, prime
836 1, 2, 3, 6, 147, 292, 419, 836 8 1480 846 150 150 290 566 abundant, semiperfect, squarefree, sphenic, composite
837 1, 5, 17E, 837 4 X00 185 184 184 674 183 deficient, squarefree, semiprime, composite
838 1, 2, 4, 11, 1E, 22, 3X, 44, 78, 20E, 41X, 838 10 1440 804 32 34 380 478 deficient, composite
839 1, 3, 7, 9, 17, 19, 49, 53, E1, 123, 293, 839 10 1254 617 25 28 460 399 deficient, composite
83X 1, 2, 41E, 83X 4 1060 422 421 421 41X 420 deficient, squarefree, semiprime, composite
83E 1, E, 91, 83E 4 920 X1 X0 X0 760 9E deficient, squarefree, semiprime, composite
840 1, 2, 3, 4, 5, 6, 8, X, 10, 13, 14, 18, 20, 21, 26, 34, 40, 42, 50, 63, 68, 84, X0, 106, 148, 180, 210, 294, 420, 840 26 2284 1644 X 19 228 614 abundant, semiperfect, highly abundant, composite
n Divisors d(n) Οƒ(n) s(n) sopf(n) sopfr(n) Ο†(n) nβˆ’Ο†(n) Notes
841 1, 841 2 842 1 841 841 840 1 deficient, squarefree, prime
842 1, 2, 421, 842 4 1066 424 423 423 420 422 deficient, squarefree, semiprime, composite
843 1, 3, 295, 843 4 E20 299 298 298 568 297 deficient, squarefree, semiprime, composite
844 1, 2, 4, 7, 12, 24, 37, 72, 124, 211, 422, 844 10 1514 890 44 46 360 4X4 abundant, semiperfect, composite
845 1, 5, 181, 845 4 X10 187 186 186 680 185 deficient, squarefree, semiprime, composite
846 1, 2, 3, 6, 9, 16, 57, E2, 149, 296, 423, 846 10 1650 X06 60 63 290 576 abundant, semiperfect, composite
847 1, 15, 5E, 847 4 900 75 74 74 794 73 deficient, squarefree, semiprime, composite
848 1, 2, 4, 8, 107, 212, 424, 848 8 13X0 754 109 111 420 428 deficient, composite
849 1, 3, 11, 27, 33, 79, 297, 849 8 1054 407 3E 3E 500 349 deficient, squarefree, sphenic, composite
84X 1, 2, 5, X, E, 1X, 47, 92, X1, 182, 425, 84X 10 1476 828 16 25 308 542 deficient, composite
84E 1, 7, 125, 84E 4 980 131 130 130 720 12E deficient, squarefree, semiprime, composite
850 1, 2, 3, 4, 6, 10, 85, 14X, 213, 298, 426, 850 10 17X0 E50 8X 90 294 578 abundant, semiperfect, composite
851 1, 851 2 852 1 851 851 850 1 deficient, squarefree, prime
852 1, 2, 427, 852 4 1080 42X 429 429 426 428 deficient, squarefree, semiprime, composite
853 1, 3, 5, 9, 13, 23, 39, 69, E3, 183, 299, 853 10 1320 689 8 18 460 3E3 deficient, composite
854 1, 2, 4, 8, 14, 17, 28, 32, 54, 64, 108, 214, 428, 854 12 1578 924 19 27 400 454 abundant, semiperfect, composite
855 1, 855 2 856 1 855 855 854 1 deficient, squarefree, prime
856 1, 2, 3, 6, 7, 12, 19, 25, 36, 4X, 73, 126, 14E, 29X, 429, 856 14 1800 E66 35 35 240 616 abundant, semiperfect, squarefree, composite
857 1, 1E, 45, 857 4 900 65 64 64 7E4 63 deficient, squarefree, semiprime, composite
858 1, 2, 4, 5, X, 18, 51, X2, 184, 215, 42X, 858 10 1610 974 58 5X 340 518 abundant, semiperfect, composite
859 1, 3, E, 29, 31, 93, 29E, 859 8 1080 423 43 43 500 359 deficient, squarefree, sphenic, composite
85X 1, 2, 11, 22, 3E, 7X, 42E, 85X 8 1200 562 52 52 3X0 47X deficient, squarefree, sphenic, composite
85E 1, 85E 2 860 1 85E 85E 85X 1 deficient, squarefree, prime
860 1, 2, 3, 4, 6, 8, 9, 10, 15, 16, 20, 2X, 30, 43, 58, 60, 86, E4, 109, 150, 216, 2X0, 430, 860 20 2046 13X6 1X 25 280 5X0 abundant, semiperfect, composite
n Divisors d(n) Οƒ(n) s(n) sopf(n) sopfr(n) Ο†(n) nβˆ’Ο†(n) Notes
861 1, 5, 7, 21, 2E, 41, 127, 185, 861 9 1033 392 10 20 5X0 281 deficient, square, perfect power, composite
862 1, 2, 431, 862 4 1096 434 433 433 430 432 deficient, squarefree, semiprime, composite
863 1, 3, 2X1, 863 4 E48 2X5 2X4 2X4 580 2X3 deficient, squarefree, semiprime, composite
864 1, 2, 4, 217, 432, 864 6 12E8 654 219 21E 430 434 deficient, composite
865 1, 865 2 866 1 865 865 864 1 deficient, squarefree, prime
866 1, 2, 3, 5, 6, X, 13, 26, 35, 6X, X3, 151, 186, 2X2, 433, 866 14 1900 1056 43 43 228 63X abundant, semiperfect, squarefree, composite
867 1, 867 2 868 1 867 867 866 1 deficient, squarefree, prime
868 1, 2, 4, 7, 8, E, 12, 14, 1X, 24, 38, 48, 65, 74, 94, 10X, 128, 218, 434, 868 18 1880 1014 18 22 340 528 abundant, semiperfect, composite
869 1, 3, 9, E5, 2X3, 869 6 1056 3X9 E8 EE 580 2X9 deficient, composite
86X 1, 2, 435, 86X 4 10X6 438 437 437 434 436 deficient, squarefree, semiprime, composite
86E 1, 5, 11, 17, 55, 7E, 187, 86E 8 E80 311 31 31 600 26E deficient, squarefree, sphenic, composite
870 1, 2, 3, 4, 6, 10, 87, 152, 219, 2X4, 436, 870 10 1828 E78 90 92 2X0 590 abundant, semiperfect, composite
871 1, 871 2 872 1 871 871 870 1 deficient, squarefree, prime
872 1, 2, 437, 872 4 10E0 43X 439 439 436 438 deficient, squarefree, semiprime, composite
873 1, 3, 7, 19, 4E, 129, 2X5, 873 8 1140 489 59 59 4X0 393 deficient, squarefree, sphenic, composite
874 1, 2, 4, 5, 8, X, 18, 27, 34, 52, X4, 10E, 188, 21X, 438, 874 14 1800 E48 32 36 340 534 abundant, semiperfect, composite
875 1, 15, 61, 875 4 930 77 76 76 800 75 deficient, squarefree, semiprime, composite
876 1, 2, 3, 6, 9, 16, 1E, 23, 3X, 46, 59, E6, 153, 2X6, 439, 876 14 1800 E46 24 2X 290 5X6 abundant, semiperfect, composite
877 1, E, 95, 877 4 960 X5 X4 X4 794 X3 deficient, squarefree, semiprime, composite
878 1, 2, 4, 21E, 43X, 878 6 1320 664 221 223 438 440 deficient, composite
879 1, 3, 5, 13, 6E, 189, 2X7, 879 8 1200 543 77 77 468 411 deficient, squarefree, sphenic, composite
87X 1, 2, 7, 12, 75, 12X, 43E, 87X 8 1300 642 82 82 380 4EX deficient, squarefree, sphenic, composite
87E 1, 25, 37, 87E 4 920 61 60 60 820 5E deficient, squarefree, semiprime, composite
880 1, 2, 3, 4, 6, 8, 10, 11, 14, 20, 22, 28, 33, 40, 44, 66, 80, 88, 110, 154, 220, 2X8, 440, 880 20 2060 13X0 16 22 280 600 abundant, semiperfect, composite
n Divisors d(n) Οƒ(n) s(n) sopf(n) sopfr(n) Ο†(n) nβˆ’Ο†(n) Notes
881 1, 881 2 882 1 881 881 880 1 deficient, squarefree, prime
882 1, 2, 5, X, 21, 42, X5, 18X, 441, 882 X 1433 771 7 1X 358 526 deficient, composite
883 1, 3, 9, E7, 2X9, 883 6 1078 3E5 EX 101 590 2E3 deficient, composite
884 1, 2, 4, 221, 442, 884 6 1332 66X 223 225 440 444 deficient, composite
885 1, 7, 12E, 885 4 X00 137 136 136 750 135 deficient, squarefree, semiprime, composite
886 1, 2, 3, 6, E, 17, 1X, 29, 32, 49, 56, 96, 155, 2XX, 443, 886 14 1800 E36 2E 2E 260 626 abundant, semiperfect, squarefree, composite
887 1, 5, 18E, 887 4 X60 195 194 194 6E4 193 deficient, squarefree, semiprime, composite
888 1, 2, 4, 8, 111, 222, 444, 888 8 1456 78X 113 117 440 448 deficient, composite
889 1, 3, 2XE, 889 4 E80 2E3 2E2 2E2 598 2E1 deficient, squarefree, semiprime, composite
88X 1, 2, 15, 2X, 31, 62, 445, 88X 8 1230 562 48 48 400 48X deficient, squarefree, sphenic, composite
88E 1, 88E 2 890 1 88E 88E 88X 1 deficient, squarefree, prime
890 1, 2, 3, 4, 5, 6, 7, 9, X, 10, 12, 13, 16, 18, 19, 24, 26, 2E, 30, 36, 39, 50, 53, 5X, 70, 76, 89, X6, E8, 130, 156, 190, 223, 2E0, 446, 890 30 2640 1970 15 1X 200 690 abundant, semiperfect, highly composite, highly abundant, composite
891 1, 11, 81, 891 4 964 93 92 92 800 91 deficient, squarefree, semiprime, composite
892 1, 2, 447, 892 4 1120 44X 449 449 446 448 deficient, squarefree, semiprime, composite
893 1, 3, 2E1, 893 4 E88 2E5 2E4 2E4 5X0 2E3 deficient, squarefree, semiprime, composite
894 1, 2, 4, 8, 14, 67, 112, 224, 448, 894 X 1528 854 69 73 440 454 deficient, composite
895 1, 5, E, 1E, 47, 97, 191, 895 8 1000 327 33 33 614 281 deficient, squarefree, sphenic, composite
896 1, 2, 3, 6, 157, 2E2, 449, 896 8 1580 8X6 160 160 2E0 5X6 abundant, semiperfect, squarefree, sphenic, composite
897 1, 7, 131, 897 4 X14 139 138 138 760 137 deficient, squarefree, semiprime, composite
898 1, 2, 4, 225, 44X, 898 6 1356 67X 227 229 448 450 deficient, composite
899 1, 3, 9, 23, 3E, E9, 2E3, 899 8 1140 463 42 48 590 309 deficient, composite
89X 1, 2, 5, X, X7, 192, 44E, 89X 8 1400 722 E2 E2 360 53X deficient, squarefree, sphenic, composite
89E 1, 27, 35, 89E 4 940 61 60 60 840 5E deficient, squarefree, semiprime, composite
8X0 1, 2, 3, 4, 6, 8, 10, 20, 45, 8X, 113, 158, 226, 2E4, 450, 8X0 14 1X60 1180 4X 52 2X8 5E4 abundant, semiperfect, composite
n Divisors d(n) Οƒ(n) s(n) sopf(n) sopfr(n) Ο†(n) nβˆ’Ο†(n) Notes
8X1 1, 17, 57, 8X1 4 954 73 72 72 830 71 deficient, squarefree, semiprime, composite
8X2 1, 2, 7, 11, 12, 22, 41, 77, 82, 132, 451, 8X2 10 1476 794 1X 25 360 542 deficient, composite
8X3 1, 3, 5, 13, 15, 21, 43, 63, 71, 193, 2E5, 8X3 10 1360 679 21 26 454 44E deficient, composite
8X4 1, 2, 4, E, 1X, 25, 38, 4X, 98, 227, 452, 8X4 10 1560 878 36 38 3X8 4E8 deficient, composite
8X5 1, 8X5 2 8X6 1 8X5 8X5 8X4 1 deficient, squarefree, prime
8X6 1, 2, 3, 6, 9, 16, 5E, EX, 159, 2E6, 453, 8X6 10 1760 X76 64 67 2E0 5E6 abundant, semiperfect, composite
8X7 1, 8X7 2 8X8 1 8X7 8X7 8X6 1 deficient, squarefree, prime
8X8 1, 2, 4, 5, 8, X, 14, 18, 28, 34, 54, 68, X8, 114, 194, 228, 454, 8X8 16 1936 104X 7 19 368 540 abundant, semiperfect, composite
8X9 1, 3, 7, 19, 51, 133, 2E7, 8X9 8 1194 4X7 5E 5E 500 3X9 deficient, squarefree, sphenic, composite
8XX 1, 2, 455, 8XX 4 1146 458 457 457 454 456 deficient, squarefree, semiprime, composite
8XE 1, 8XE 2 8E0 1 8XE 8XE 8XX 1 deficient, squarefree, prime
8E0 1, 2, 3, 4, 6, 10, 8E, 15X, 229, 2E8, 456, 8E0 10 1900 1010 94 96 2E4 5E8 abundant, semiperfect, composite
8E1 1, 5, 195, 8E1 4 X90 19E 19X 19X 714 199 deficient, squarefree, semiprime, composite
8E2 1, 2, 457, 8E2 4 1150 45X 459 459 456 458 deficient, squarefree, semiprime, composite
8E3 1, 3, 9, E, 11, 29, 33, 83, 99, EE, 2E9, 8E3 10 1320 629 23 26 500 3E3 deficient, composite
8E4 1, 2, 4, 7, 8, 12, 1E, 24, 3X, 48, 78, 115, 134, 22X, 458, 8E4 14 1800 E08 28 30 380 534 abundant, semiperfect, composite
8E5 1, 8E5 2 8E6 1 8E5 8E5 8E4 1 deficient, squarefree, prime
8E6 1, 2, 3, 5, 6, X, 13, 26, 37, 72, X9, 15E, 196, 2EX, 459, 8E6 14 1X00 1106 45 45 240 676 abundant, semiperfect, squarefree, composite
8E7 1, 8E7 2 8E8 1 8E7 8E7 8E6 1 deficient, squarefree, prime
8E8 1, 2, 4, 15, 17, 2X, 32, 58, 64, 22E, 45X, 8E8 10 1560 864 32 34 400 4E8 deficient, composite
8E9 1, 3, 2EE, 8E9 4 1000 303 302 302 5E8 301 deficient, squarefree, semiprime, composite
8EX 1, 2, 45E, 8EX 4 1160 462 461 461 45X 460 deficient, squarefree, semiprime, composite
8EE 1, 5, 7, 2E, 31, 135, 197, 8EE 8 1080 381 41 41 600 2EE deficient, squarefree, sphenic, composite
900 1, 2, 3, 4, 6, 8, 9, 10, 14, 16, 20, 23, 30, 40, 46, 60, 69, 90, 100, 116, 160, 230, 300, 460, 900 21 2207 1507 5 18 300 600 abundant, square, perfect power, semiperfect, composite

901 to X00[]

n Divisors d(n) Οƒ(n) s(n) sopf(n) sopfr(n) Ο†(n) nβˆ’Ο†(n) Notes
901 1, 901 2 902 1 901 901 900 1 deficient, squarefree, prime
902 1, 2, E, 1X, 4E, 9X, 461, 902 8 1300 5EX 60 60 404 4EX deficient, squarefree, sphenic, composite
903 1, 3, 301, 903 4 1008 305 304 304 600 303 deficient, squarefree, semiprime, composite
904 1, 2, 4, 5, X, 11, 18, 21, 22, 42, 44, 55, 84, XX, 198, 231, 462, 904 16 1912 100X 18 23 340 584 abundant, semiperfect, composite
905 1, 905 2 906 1 905 905 904 1 deficient, squarefree, prime
906 1, 2, 3, 6, 7, 12, 19, 27, 36, 52, 79, 136, 161, 302, 463, 906 14 1940 1036 37 37 260 666 abundant, semiperfect, squarefree, composite
907 1, 907 2 908 1 907 907 906 1 deficient, squarefree, prime
908 1, 2, 4, 8, 117, 232, 464, 908 8 1510 804 119 121 460 468 deficient, composite
909 1, 3, 5, 9, 13, 25, 39, 73, 101, 199, 303, 909 10 1430 723 31 34 480 449 deficient, composite
90X 1, 2, 465, 90X 4 1176 468 467 467 464 466 deficient, squarefree, semiprime, composite
90E 1, 90E 2 910 1 90E 90E 90X 1 deficient, squarefree, prime
910 1, 2, 3, 4, 6, 10, 91, 162, 233, 304, 466, 910 10 1948 1038 96 98 300 610 abundant, semiperfect, composite
911 1, 7, E, 15, 65, 9E, 137, 911 8 1000 2XE 2E 2E 680 251 deficient, squarefree, sphenic, composite
912 1, 2, 5, X, XE, 19X, 467, 912 8 1460 74X E6 E6 374 55X deficient, squarefree, sphenic, composite
913 1, 3, 17, 1E, 49, 59, 305, 913 8 1140 429 39 39 560 373 deficient, squarefree, sphenic, composite
914 1, 2, 4, 8, 14, 28, 35, 6X, 118, 234, 468, 914 10 1646 932 37 43 454 480 abundant, semiperfect, primitive abundant, composite
915 1, 11, 85, 915 4 9E0 97 96 96 840 95 deficient, squarefree, semiprime, composite
916 1, 2, 3, 6, 9, 16, 61, 102, 163, 306, 469, 916 10 1806 XE0 66 69 300 616 abundant, semiperfect, composite
917 1, 5, 19E, 917 4 E00 1X5 1X4 1X4 734 1X3 deficient, squarefree, semiprime, composite
918 1, 2, 4, 7, 12, 24, 3E, 7X, 138, 235, 46X, 918 10 1680 964 48 4X 3X0 538 abundant, semiperfect, composite
919 1, 3, 307, 919 4 1028 30E 30X 30X 610 309 deficient, squarefree, semiprime, composite
91X 1, 2, 46E, 91X 4 1190 472 471 471 46X 470 deficient, squarefree, semiprime, composite
91E 1, 91E 2 920 1 91E 91E 91X 1 deficient, squarefree, prime
920 1, 2, 3, 4, 5, 6, 8, X, E, 10, 13, 18, 1X, 20, 26, 29, 34, 38, 47, 50, 56, 74, 92, X0, E0, 119, 164, 1X0, 236, 308, 470, 920 28 2600 18X0 19 21 228 6E4 abundant, semiperfect, composite
n Divisors d(n) Οƒ(n) s(n) sopf(n) sopfr(n) Ο†(n) nβˆ’Ο†(n) Notes
921 1, 921 2 922 1 921 921 920 1 deficient, squarefree, prime
922 1, 2, 471, 922 4 1196 474 473 473 470 472 deficient, squarefree, semiprime, composite
923 1, 3, 7, 9, 19, 23, 41, 53, 103, 139, 309, 923 10 13X0 679 X 1E 530 3E3 deficient, composite
924 1, 2, 4, 237, 472, 924 6 1418 6E4 239 23E 470 474 deficient, composite
925 1, 5, 21, 45, 1X1, 925 6 E76 251 4X 53 728 1E9 deficient, composite
926 1, 2, 3, 6, 11, 15, 22, 2X, 33, 43, 66, 86, 165, 30X, 473, 926 14 1900 E96 2E 2E 280 666 abundant, semiperfect, squarefree, composite
927 1, 927 2 928 1 927 927 926 1 deficient, squarefree, prime
928 1, 2, 4, 8, 14, 6E, 11X, 238, 474, 928 X 1610 8X4 71 77 468 480 deficient, composite
929 1, 3, 30E, 929 4 1040 313 312 312 618 311 deficient, squarefree, semiprime, composite
92X 1, 2, 5, 7, X, 12, 17, 2E, 32, 5X, 7E, E1, 13X, 1X2, 475, 92X 14 1800 X92 29 29 300 62X abundant, semiperfect, squarefree, composite
92E 1, E, X1, 92E 4 X20 E1 E 29 84X X1 deficient, perfect power, composite
930 1, 2, 3, 4, 6, 9, 10, 16, 30, 31, 62, 93, 104, 166, 239, 310, 476, 930 16 2002 1292 36 3E 300 630 abundant, semiperfect, composite
931 1, 27, 37, 931 4 994 63 62 62 890 61 deficient, squarefree, semiprime, composite
932 1, 2, 1E, 25, 3X, 4X, 477, 932 8 1300 58X 46 46 434 4EX deficient, squarefree, sphenic, composite
933 1, 3, 5, 13, 75, 1X3, 311, 933 8 1300 589 81 81 4X8 447 deficient, squarefree, sphenic, composite
934 1, 2, 4, 8, 11E, 23X, 478, 934 8 1560 828 121 125 474 480 deficient, composite
935 1, 7, 13E, 935 4 X80 147 146 146 7E0 145 deficient, squarefree, semiprime, composite
936 1, 2, 3, 6, 167, 312, 479, 936 8 1680 946 170 170 310 626 abundant, semiperfect, squarefree, sphenic, composite
937 1, 11, 87, 937 4 X14 99 98 98 860 97 deficient, squarefree, semiprime, composite
938 1, 2, 4, 5, X, 18, 57, E2, 1X4, 23E, 47X, 938 10 17X0 X64 62 64 380 578 abundant, semiperfect, composite
939 1, 3, 9, 105, 313, 939 6 1166 429 108 10E 620 319 deficient, composite
93X 1, 2, E, 1X, 51, X2, 47E, 93X 8 1360 622 62 62 420 51X deficient, squarefree, sphenic, composite
93E 1, 15, 67, 93E 4 X00 81 80 80 880 7E deficient, squarefree, semiprime, composite
940 1, 2, 3, 4, 6, 7, 8, 10, 12, 14, 19, 20, 24, 28, 36, 40, 48, 54, 70, 80, 94, 120, 140, 168, 240, 314, 480, 940 24 2428 16X8 10 1X 280 680 abundant, semiperfect, composite
n Divisors d(n) Οƒ(n) s(n) sopf(n) sopfr(n) Ο†(n) nβˆ’Ο†(n) Notes
941 1, 5, 1X5, 941 4 E30 1XE 1XX 1XX 754 1X9 deficient, squarefree, semiprime, composite
942 1, 2, 481, 942 4 1206 484 483 483 480 482 deficient, squarefree, semiprime, composite
943 1, 3, 315, 943 4 1060 319 318 318 628 317 deficient, squarefree, semiprime, composite
944 1, 2, 4, 241, 482, 944 6 1452 70X 243 245 480 484 deficient, composite
945 1, 17, 5E, 945 4 X00 77 76 76 890 75 deficient, squarefree, semiprime, composite
946 1, 2, 3, 5, 6, 9, X, 13, 16, 21, 23, 26, 39, 42, 46, 63, 76, E3, 106, 169, 1X6, 316, 483, 946 20 21X0 1456 X 19 260 6X6 abundant, semiperfect, composite
947 1, 7, 141, 947 4 X94 149 148 148 800 147 deficient, squarefree, semiprime, composite
948 1, 2, 4, 8, 11, 22, 44, 88, 121, 242, 484, 948 10 1709 981 13 28 440 508 abundant, semiperfect, composite
949 1, 3, E, 29, 35, X3, 317, 949 8 1200 473 47 47 568 3X1 deficient, squarefree, sphenic, composite
94X 1, 2, 485, 94X 4 1216 488 487 487 484 486 deficient, squarefree, semiprime, composite
94E 1, 5, 1X7, 94E 4 E40 1E1 1E0 1E0 760 1XE deficient, squarefree, semiprime, composite
950 1, 2, 3, 4, 6, 10, 95, 16X, 243, 318, 486, 950 10 1X20 1090 9X X0 314 638 abundant, semiperfect, composite
951 1, 1E, 4E, 951 4 X00 6E 6X 6X 8X4 69 deficient, squarefree, semiprime, composite
952 1, 2, 7, 12, 81, 142, 487, 952 8 1440 6XX 8X 8X 400 552 deficient, squarefree, sphenic, composite
953 1, 3, 9, 107, 319, 953 6 1188 435 10X 111 630 323 deficient, composite
954 1, 2, 4, 5, 8, X, 14, 15, 18, 2X, 34, 58, 68, 71, E4, 122, 1X8, 244, 488, 954 18 1E30 1198 20 26 368 5X8 abundant, semiperfect, composite
955 1, 955 2 956 1 955 955 954 1 deficient, squarefree, prime
956 1, 2, 3, 6, 16E, 31X, 489, 956 8 1700 966 174 174 318 63X abundant, semiperfect, squarefree, sphenic, composite
957 1, 25, 3E, 957 4 X00 65 64 64 8E4 63 deficient, squarefree, semiprime, composite
958 1, 2, 4, E, 1X, 27, 38, 52, X4, 245, 48X, 958 10 1680 924 38 3X 420 538 deficient, composite
959 1, 3, 5, 7, 11, 13, 19, 2E, 33, 55, 77, 89, 143, 1X9, 31E, 959 14 1680 923 24 24 400 559 deficient, squarefree, composite
95X 1, 2, 48E, 95X 4 1230 492 491 491 48X 490 deficient, squarefree, semiprime, composite
95E 1, 95E 2 960 1 95E 95E 95X 1 deficient, squarefree, prime
960 1, 2, 3, 4, 6, 8, 9, 10, 16, 17, 20, 30, 32, 49, 60, 64, 96, 108, 123, 170, 246, 320, 490, 960 20 2310 1570 20 27 300 660 abundant, semiperfect, composite
n Divisors d(n) Οƒ(n) s(n) sopf(n) sopfr(n) Ο†(n) nβˆ’Ο†(n) Notes
961 1, 31, 961 3 993 32 31 62 930 31 deficient, square, perfect power, semiprime, composite
962 1, 2, 5, X, E5, 1XX, 491, 962 8 1530 78X 100 100 394 58X deficient, squarefree, sphenic, composite
963 1, 3, 321, 963 4 1088 325 324 324 640 323 deficient, squarefree, semiprime, composite
964 1, 2, 4, 7, 12, 24, 41, 82, 144, 247, 492, 964 10 1754 9E0 9 21 410 554 abundant, semiperfect, composite
965 1, 965 2 966 1 965 965 964 1 deficient, squarefree, prime
966 1, 2, 3, 6, 171, 322, 493, 966 8 1720 976 176 176 320 646 abundant, semiperfect, squarefree, sphenic, composite
967 1, 5, E, 21, 47, X5, 1XE, 967 8 1100 355 14 22 6E4 273 deficient, composite
968 1, 2, 4, 8, 14, 28, 37, 72, 124, 248, 494, 968 10 1730 984 39 45 480 4X8 abundant, semiperfect, primitive abundant, composite
969 1, 3, 9, 15, 23, 43, 69, 109, 323, 969 X 1316 569 18 25 600 369 deficient, composite
96X 1, 2, 11, 22, 45, 8X, 495, 96X 8 1390 622 58 58 440 52X deficient, squarefree, sphenic, composite
96E 1, 7, 145, 96E 4 E00 151 150 150 820 14E deficient, squarefree, semiprime, composite
970 1, 2, 3, 4, 5, 6, X, 10, 13, 18, 1E, 26, 3X, 50, 59, 78, 97, E6, 172, 1E0, 249, 324, 496, 970 20 2400 1650 29 2E 254 718 abundant, semiperfect, composite
971 1, 971 2 972 1 971 971 970 1 deficient, squarefree, prime
972 1, 2, 497, 972 4 1250 49X 499 499 496 498 deficient, squarefree, semiprime, composite
973 1, 3, 325, 973 4 10X0 329 328 328 648 327 deficient, squarefree, semiprime, composite
974 1, 2, 4, 8, 125, 24X, 498, 974 8 1616 862 127 12E 494 4X0 deficient, composite
975 1, 5, 1E1, 975 4 E70 1E7 1E6 1E6 780 1E5 deficient, squarefree, semiprime, composite
976 1, 2, 3, 6, 7, 9, E, 12, 16, 19, 1X, 29, 36, 53, 56, 65, 83, X6, 10X, 146, 173, 326, 499, 976 20 2200 1446 1E 22 260 716 abundant, semiperfect, composite
977 1, 17, 61, 977 4 X34 79 78 78 900 77 deficient, squarefree, semiprime, composite
978 1, 2, 4, 24E, 49X, 978 6 14E0 734 251 253 498 4X0 deficient, composite
979 1, 3, 327, 979 4 10X8 32E 32X 32X 650 329 deficient, squarefree, semiprime, composite
97X 1, 2, 5, X, E7, 1E2, 49E, 97X 8 1560 7X2 102 102 3X0 59X deficient, squarefree, sphenic, composite
97E 1, 11, 8E, 97E 4 X60 X1 X0 X0 8X0 9E deficient, squarefree, semiprime, composite
980 1, 2, 3, 4, 6, 8, 10, 14, 20, 25, 40, 4X, 73, 98, 126, 174, 250, 328, 4X0, 980 18 21X0 1420 2X 34 314 668 abundant, semiperfect, composite
n Divisors d(n) Οƒ(n) s(n) sopf(n) sopfr(n) Ο†(n) nβˆ’Ο†(n) Notes
981 1, 7, 147, 981 4 E14 153 152 152 830 151 deficient, squarefree, semiprime, composite
982 1, 2, 15, 2X, 35, 6X, 4X1, 982 8 1390 60X 50 50 454 52X deficient, squarefree, sphenic, composite
983 1, 3, 5, 9, 13, 27, 39, 79, 10E, 1E3, 329, 983 10 1540 779 33 36 500 483 deficient, composite
984 1, 2, 4, 251, 4X2, 984 6 1502 73X 253 255 4X0 4X4 deficient, composite
985 1, E, X7, 985 4 X80 E7 E6 E6 890 E5 deficient, squarefree, semiprime, composite
986 1, 2, 3, 6, 175, 32X, 4X3, 986 8 1760 996 17X 17X 328 65X abundant, semiperfect, squarefree, sphenic, composite
987 1, 987 2 988 1 987 987 986 1 deficient, squarefree, prime
988 1, 2, 4, 5, 7, 8, X, 12, 18, 21, 24, 2E, 34, 42, 48, 5X, 84, E8, 127, 148, 1E4, 252, 4X4, 988 20 21X0 1414 12 1E 340 648 abundant, semiperfect, composite
989 1, 3, 32E, 989 4 1100 333 332 332 658 331 deficient, squarefree, semiprime, composite
98X 1, 2, 4X5, 98X 4 1276 4X8 4X7 4X7 4X4 4X6 deficient, squarefree, semiprime, composite
98E 1, 1E, 51, 98E 4 X40 71 70 70 920 6E deficient, squarefree, semiprime, composite
990 1, 2, 3, 4, 6, 9, 10, 11, 16, 22, 23, 30, 33, 44, 46, 66, 90, 99, 110, 176, 253, 330, 4X6, 990 20 2328 1558 16 22 300 690 abundant, semiperfect, composite
991 1, 5, 1E5, 991 4 E90 1EE 1EX 1EX 794 1E9 deficient, squarefree, semiprime, composite
992 1, 2, 17, 31, 32, 62, 4X7, 992 8 13X0 60X 4X 4X 460 532 deficient, squarefree, sphenic, composite
993 1, 3, 7, 19, 57, 149, 331, 993 8 1314 541 65 65 560 433 deficient, squarefree, sphenic, composite
994 1, 2, 4, 8, E, 14, 1X, 28, 38, 54, 74, X8, 128, 254, 4X8, 994 14 1930 E58 11 21 454 540 abundant, semiperfect, composite
995 1, 995 2 996 1 995 995 994 1 deficient, squarefree, prime
996 1, 2, 3, 5, 6, X, 13, 26, 3E, 7X, E9, 177, 1E6, 332, 4X9, 996 14 2000 1226 49 49 268 72X abundant, semiperfect, squarefree, composite
997 1, 15, 6E, 997 4 X60 85 84 84 914 83 deficient, squarefree, semiprime, composite
998 1, 2, 4, 255, 4XX, 998 6 1526 74X 257 259 4X8 4E0 deficient, composite
999 1, 3, 9, 111, 333, 999 6 1232 455 114 117 660 339 deficient, composite
99X 1, 2, 7, 12, 85, 14X, 4XE, 99X 8 1500 722 92 92 420 57X deficient, squarefree, sphenic, composite
99E 1, 5, 1E7, 99E 4 EX0 201 200 200 7X0 1EE deficient, squarefree, semiprime, composite
9X0 1, 2, 3, 4, 6, 8, 10, 20, 4E, 9X, 129, 178, 256, 334, 4E0, 9X0 14 2100 1320 54 58 328 674 abundant, semiperfect, composite
n Divisors d(n) Οƒ(n) s(n) sopf(n) sopfr(n) Ο†(n) nβˆ’Ο†(n) Notes
9X1 1, 11, 91, 9X1 4 X84 X3 X2 X2 900 X1 deficient, squarefree, semiprime, composite
9X2 1, 2, 4E1, 9X2 4 1296 4E4 4E3 4E3 4E0 4E2 deficient, squarefree, semiprime, composite
9X3 1, 3, E, 29, 37, X9, 335, 9X3 8 1280 499 49 49 5X0 403 deficient, squarefree, sphenic, composite
9X4 1, 2, 4, 5, X, 18, 5E, EX, 1E8, 257, 4E2, 9X4 10 1900 E18 66 68 3X8 5E8 abundant, semiperfect, composite
9X5 1, 7, 25, 41, 14E, 9X5 6 EX6 201 30 37 820 185 deficient, composite
9X6 1, 2, 3, 6, 9, 16, 67, 112, 179, 336, 4E3, 9X6 10 1980 E96 70 73 330 676 abundant, semiperfect, composite
9X7 1, 9X7 2 9X8 1 9X7 9X7 9X6 1 deficient, squarefree, prime
9X8 1, 2, 4, 8, 14, 75, 12X, 258, 4E4, 9X8 X 1746 95X 77 81 4X8 500 deficient, composite
9X9 1, 3, 5, 13, 17, 21, 49, 63, 7E, 1E9, 337, 9X9 10 1528 73E 23 28 500 4X9 deficient, composite
9XX 1, 2, 1E, 27, 3X, 52, 4E5, 9XX 8 1400 612 48 48 470 53X deficient, squarefree, sphenic, composite
9XE 1, 9XE 2 9E0 1 9XE 9XE 9XX 1 deficient, squarefree, prime
9E0 1, 2, 3, 4, 6, 7, 10, 12, 15, 19, 24, 2X, 36, 43, 58, 70, 86, 9E, 150, 17X, 259, 338, 4E6, 9E0 20 2400 1610 25 27 280 730 abundant, semiperfect, composite
9E1 1, 9E1 2 9E2 1 9E1 9E1 9E0 1 deficient, squarefree, prime
9E2 1, 2, 5, X, E, 11, 1X, 22, 47, 55, 92, XX, EE, 1EX, 4E7, 9E2 14 1900 E0X 27 27 340 672 abundant, semiperfect, primitive abundant, squarefree, composite
9E3 1, 3, 9, 23, 45, 113, 339, 9E3 8 1300 509 48 52 660 353 deficient, composite
9E4 1, 2, 4, 8, 12E, 25X, 4E8, 9E4 8 1690 898 131 135 4E4 500 deficient, composite
9E5 1, 9E5 2 9E6 1 9E5 9E5 9E4 1 deficient, squarefree, prime
9E6 1, 2, 3, 6, 17E, 33X, 4E9, 9E6 8 1800 X06 184 184 338 67X abundant, semiperfect, squarefree, sphenic, composite
9E7 1, 5, 7, 2E, 35, 151, 1EE, 9E7 8 1200 405 45 45 680 337 deficient, squarefree, sphenic, composite
9E8 1, 2, 4, 25E, 4EX, 9E8 6 1560 764 261 263 4E8 500 deficient, composite
9E9 1, 3, 33E, 9E9 4 1140 343 342 342 678 341 deficient, squarefree, semiprime, composite
9EX 1, 2, 4EE, 9EX 4 1300 502 501 501 4EX 500 deficient, squarefree, semiprime, composite
9EE 1, 9EE 2 X00 1 9EE 9EE 9EX 1 deficient, squarefree, prime
X00 1, 2, 3, 4, 5, 6, 8, 9, X, 10, 13, 14, 16, 18, 20, 26, 28, 30, 34, 39, 40, 50, 60, 68, 76, 80, X0, 100, 114, 130, 180, 200, 260, 340, 500, X00 30 2X16 2016 X 19 280 740 abundant, semiperfect, highly abundant, composite

X01 to E00[]

n Divisors d(n) Οƒ(n) s(n) sopf(n) sopfr(n) Ο†(n) nβˆ’Ο†(n) Notes
X01 1, E, XE, X01 4 E00 EE EX EX 904 E9 deficient, squarefree, semiprime, composite
X02 1, 2, 7, 12, 87, 152, 501, X02 8 1540 73X 94 94 430 592 deficient, squarefree, sphenic, composite
X03 1, 3, 11, 31, 33, 93, 341, X03 8 1294 491 45 45 600 403 deficient, squarefree, sphenic, composite
X04 1, 2, 4, 17, 32, 64, 261, 502, X04 9 1663 85E 19 36 490 534 deficient, square, perfect power, composite
X05 1, 5, 15, 71, 201, X05 6 1096 291 1X 33 768 259 deficient, composite
X06 1, 2, 3, 6, 181, 342, 503, X06 8 1820 X16 186 186 340 686 abundant, semiperfect, squarefree, sphenic, composite
X07 1, X07 2 X08 1 X07 X07 X06 1 deficient, squarefree, prime
X08 1, 2, 4, 8, 131, 262, 504, X08 8 16E6 8XX 133 137 500 508 deficient, composite
X09 1, 3, 7, 9, 19, 1E, 53, 59, 115, 153, 343, X09 10 1540 733 29 30 560 469 deficient, composite
X0X 1, 2, 5, X, 21, 25, 42, 4X, 101, 202, 505, X0X 10 1746 938 30 35 3X8 622 deficient, composite
X0E 1, X0E 2 X10 1 X0E X0E X0X 1 deficient, squarefree, prime
X10 1, 2, 3, 4, 6, E, 10, 1X, 29, 38, 56, X1, E0, 182, 263, 344, 506, X10 16 21X4 1394 14 25 308 704 abundant, semiperfect, composite
X11 1, X11 2 X12 1 X11 X11 X10 1 deficient, squarefree, prime
X12 1, 2, 507, X12 4 1320 50X 509 509 506 508 deficient, squarefree, semiprime, composite
X13 1, 3, 5, 13, 81, 203, 345, X13 8 1440 629 89 89 540 493 deficient, squarefree, sphenic, composite
X14 1, 2, 4, 7, 8, 11, 12, 14, 22, 24, 44, 48, 77, 88, 94, 132, 154, 264, 508, X14 18 2014 1200 1X 24 400 614 abundant, semiperfect, composite
X15 1, 27, 3E, X15 4 X80 67 66 66 970 65 deficient, squarefree, semiprime, composite
X16 1, 2, 3, 6, 9, 16, 23, 46, 69, 116, 183, 346, 509, X16 12 1X93 1079 5 18 346 690 abundant, semiperfect, composite
X17 1, X17 2 X18 1 X17 X17 X16 1 deficient, squarefree, prime
X18 1, 2, 4, 5, X, 18, 61, 102, 204, 265, 50X, X18 10 1970 E54 68 6X 400 618 abundant, semiperfect, composite
X19 1, 3, 347, X19 4 1168 34E 34X 34X 690 349 deficient, squarefree, semiprime, composite
X1X 1, 2, 15, 2X, 37, 72, 50E, X1X 8 1460 642 52 52 480 55X deficient, squarefree, sphenic, composite
X1E 1, 7, E, 17, 65, E1, 155, X1E 8 1140 321 31 31 760 27E deficient, squarefree, sphenic, composite
X20 1, 2, 3, 4, 6, 8, 10, 20, 51, X2, 133, 184, 266, 348, 510, X20 14 21X0 1380 56 5X 340 6X0 abundant, semiperfect, composite
n Divisors d(n) Οƒ(n) s(n) sopf(n) sopfr(n) Ο†(n) nβˆ’Ο†(n) Notes
X21 1, 5, 205, X21 4 1030 20E 20X 20X 814 209 deficient, squarefree, semiprime, composite
X22 1, 2, 511, X22 4 1336 514 513 513 510 512 deficient, squarefree, semiprime, composite
X23 1, 3, 9, 117, 349, X23 6 1298 475 11X 121 690 353 deficient, composite
X24 1, 2, 4, 267, 512, X24 6 15X8 784 269 26E 510 514 deficient, composite
X25 1, 11, 95, X25 4 E10 X7 X6 X6 940 X5 deficient, squarefree, semiprime, composite
X26 1, 2, 3, 5, 6, 7, X, 12, 13, 19, 26, 2E, 36, 41, 5X, 82, 89, 103, 156, 185, 206, 34X, 513, X26 20 2460 1636 15 20 240 7X6 abundant, semiperfect, composite
X27 1, X27 2 X28 1 X27 X27 X26 1 deficient, squarefree, prime
X28 1, 2, 4, 8, 14, 1E, 28, 3X, 54, 78, 134, 268, 514, X28 12 1920 XE4 21 2E 4X8 540 abundant, semiperfect, composite
X29 1, 3, 34E, X29 4 1180 353 352 352 698 351 deficient, squarefree, semiprime, composite
X2X 1, 2, E, 1X, 57, E2, 515, X2X 8 1500 692 68 68 470 57X deficient, squarefree, sphenic, composite
X2E 1, 5, 21, 4E, 207, X2E 6 10E0 281 54 59 808 223 deficient, composite
X30 1, 2, 3, 4, 6, 9, 10, 16, 30, 35, 6X, X3, 118, 186, 269, 350, 516, X30 16 2266 1436 3X 43 340 6E0 abundant, semiperfect, composite
X31 1, 7, 157, X31 4 E94 163 162 162 890 161 deficient, squarefree, semiprime, composite
X32 1, 2, 517, X32 4 1350 51X 519 519 516 518 deficient, squarefree, semiprime, composite
X33 1, 3, 15, 25, 43, 73, 351, X33 8 1300 489 41 41 628 407 deficient, squarefree, sphenic, composite
X34 1, 2, 4, 5, 8, X, 18, 31, 34, 62, 104, 135, 208, 26X, 518, X34 14 1E90 1158 38 40 400 634 abundant, semiperfect, composite
X35 1, X35 2 X36 1 X35 X35 X34 1 deficient, squarefree, prime
X36 1, 2, 3, 6, 11, 17, 22, 32, 33, 49, 66, 96, 187, 352, 519, X36 14 1E40 1106 31 31 300 736 abundant, semiperfect, squarefree, composite
X37 1, X37 2 X38 1 X37 X37 X36 1 deficient, squarefree, prime
X38 1, 2, 4, 7, 12, 24, 45, 8X, 158, 26E, 51X, X38 10 1900 X84 52 54 440 5E8 abundant, semiperfect, composite
X39 1, 3, 5, 9, E, 13, 23, 29, 39, 47, 83, E3, 119, 209, 353, X39 14 1800 983 17 21 500 539 deficient, composite
X3X 1, 2, 51E, X3X 4 1360 522 521 521 51X 520 deficient, squarefree, semiprime, composite
X3E 1, X3E 2 X40 1 X3E X3E X3X 1 deficient, squarefree, prime
X40 1, 2, 3, 4, 6, 8, 10, 14, 20, 27, 40, 52, 79, X4, 136, 188, 270, 354, 520, X40 18 2368 1528 30 36 340 700 abundant, semiperfect, composite
n Divisors d(n) Οƒ(n) s(n) sopf(n) sopfr(n) Ο†(n) nβˆ’Ο†(n) Notes
X41 1, X41 2 X42 1 X41 X41 X40 1 deficient, squarefree, prime
X42 1, 2, 5, X, 105, 20X, 521, X42 8 1690 84X 110 110 414 62X deficient, squarefree, sphenic, composite
X43 1, 3, 7, 19, 5E, 159, 355, X43 8 1400 579 69 69 5X0 463 deficient, squarefree, sphenic, composite
X44 1, 2, 4, 271, 522, X44 6 1622 79X 273 275 520 524 deficient, composite
X45 1, X45 2 X46 1 X45 X45 X44 1 deficient, squarefree, prime
X46 1, 2, 3, 6, 9, 16, 6E, 11X, 189, 356, 523, X46 10 1X90 1046 74 77 350 6E6 abundant, semiperfect, composite
X47 1, 5, 11, 1E, 55, 97, 20E, X47 8 1200 375 35 35 740 307 deficient, squarefree, sphenic, composite
X48 1, 2, 4, 8, E, 15, 1X, 2X, 38, 58, 74, E4, 137, 272, 524, X48 14 1X60 1014 26 2X 454 5E4 abundant, semiperfect, composite
X49 1, 3, 357, X49 4 11X8 35E 35X 35X 6E0 359 deficient, squarefree, semiprime, composite
X4X 1, 2, 7, 12, 8E, 15X, 525, X4X 8 1600 772 98 98 450 5EX deficient, squarefree, sphenic, composite
X4E 1, X4E 2 X50 1 X4E X4E X4X 1 deficient, squarefree, prime
X50 1, 2, 3, 4, 5, 6, X, 10, 13, 18, 21, 26, 42, 50, 63, 84, X5, 106, 18X, 210, 273, 358, 526, X50 20 2640 17E0 X 1X 294 778 abundant, semiperfect, composite
X51 1, 17, 67, X51 4 E14 83 82 82 990 81 deficient, squarefree, semiprime, composite
X52 1, 2, 527, X52 4 1380 52X 529 529 526 528 deficient, squarefree, semiprime, composite
X53 1, 3, 9, 11E, 359, X53 6 1320 489 122 125 6E0 363 deficient, composite
X54 1, 2, 4, 8, 14, 28, 3E, 7X, 138, 274, 528, X54 10 1900 X68 41 49 514 540 abundant, semiperfect, primitive abundant, composite
X55 1, 5, 7, 2E, 37, 15E, 211, X55 8 1280 427 47 47 700 355 deficient, squarefree, sphenic, composite
X56 1, 2, 3, 6, 18E, 35X, 529, X56 8 1900 X66 194 194 358 6EX abundant, semiperfect, squarefree, sphenic, composite
X57 1, E, E5, X57 4 E60 105 104 104 954 103 deficient, squarefree, semiprime, composite
X58 1, 2, 4, 11, 22, 25, 44, 4X, 98, 275, 52X, X58 10 1850 9E4 38 3X 480 598 deficient, composite
X59 1, 3, 35E, X59 4 1200 363 362 362 6E8 361 deficient, squarefree, semiprime, composite
X5X 1, 2, 5, X, 107, 212, 52E, X5X 8 1700 862 112 112 420 63X deficient, squarefree, sphenic, composite
X5E 1, X5E 2 X60 1 X5E X5E X5X 1 deficient, squarefree, prime
X60 1, 2, 3, 4, 6, 7, 8, 9, 10, 12, 16, 19, 20, 23, 24, 30, 36, 46, 48, 53, 60, 70, 90, X6, 120, 139, 160, 190, 276, 360, 530, X60 28 2940 1XX0 10 1X 300 760 abundant, semiperfect, composite
n Divisors d(n) Οƒ(n) s(n) sopf(n) sopfr(n) Ο†(n) nβˆ’Ο†(n) Notes
X61 1, 15, 75, X61 4 E30 8E 8X 8X 994 89 deficient, squarefree, semiprime, composite
X62 1, 2, 531, X62 4 1396 534 533 533 530 532 deficient, squarefree, semiprime, composite
X63 1, 3, 5, 13, 85, 213, 361, X63 8 1500 659 91 91 568 4E7 deficient, squarefree, sphenic, composite
X64 1, 2, 4, 277, 532, X64 6 1658 7E4 279 27E 530 534 deficient, composite
X65 1, 31, 35, X65 4 E10 67 66 66 X00 65 deficient, squarefree, semiprime, composite
X66 1, 2, 3, 6, E, 1X, 1E, 29, 3X, 56, 59, E6, 191, 362, 533, X66 14 2000 1156 33 33 308 75X abundant, semiperfect, squarefree, composite
X67 1, 7, 27, 41, 161, X67 6 1080 215 32 39 890 197 deficient, composite
X68 1, 2, 4, 5, 8, X, 14, 17, 18, 32, 34, 64, 68, 7E, 108, 13X, 214, 278, 534, X68 18 21X0 1334 22 28 400 668 abundant, semiperfect, composite
X69 1, 3, 9, 11, 33, 99, 121, 363, X69 9 1463 5E6 14 28 660 409 deficient, square, perfect power, composite
X6X 1, 2, 535, X6X 4 13X6 538 537 537 534 536 deficient, squarefree, semiprime, composite
X6E 1, X6E 2 X70 1 X6E X6E X6X 1 deficient, squarefree, prime
X70 1, 2, 3, 4, 6, 10, X7, 192, 279, 364, 536, X70 10 20X8 1238 E0 E2 360 710 abundant, semiperfect, composite
X71 1, 5, 21, 51, 215, X71 6 1142 291 56 5E 840 231 deficient, composite
X72 1, 2, 7, 12, 91, 162, 537, X72 8 1640 78X 9X 9X 460 612 deficient, squarefree, sphenic, composite
X73 1, 3, 365, X73 4 1220 369 368 368 708 367 deficient, squarefree, semiprime, composite
X74 1, 2, 4, 8, 13E, 27X, 538, X74 8 1800 948 141 145 534 540 deficient, composite
X75 1, E, E7, X75 4 E80 107 106 106 970 105 deficient, squarefree, semiprime, composite
X76 1, 2, 3, 5, 6, 9, X, 13, 15, 16, 26, 2X, 39, 43, 71, 76, 86, 109, 122, 193, 216, 366, 539, X76 20 2530 1676 23 26 280 7E6 abundant, semiperfect, composite
X77 1, X77 2 X78 1 X77 X77 X76 1 deficient, squarefree, prime
X78 1, 2, 4, 27E, 53X, X78 6 1680 804 281 283 538 540 deficient, composite
X79 1, 3, 7, 19, 61, 163, 367, X79 8 1454 597 6E 6E 600 479 deficient, squarefree, sphenic, composite
X7X 1, 2, 11, 22, 4E, 9X, 53E, X7X 8 1560 6X2 62 62 4X0 59X deficient, squarefree, sphenic, composite
X7E 1, 5, 217, X7E 4 10X0 221 220 220 860 21E deficient, squarefree, semiprime, composite
X80 1, 2, 3, 4, 6, 8, 10, 14, 20, 28, 40, 54, 80, X8, 140, 194, 280, 368, 540, X80 18 2450 1590 5 19 368 714 abundant, semiperfect, composite
n Divisors d(n) Οƒ(n) s(n) sopf(n) sopfr(n) Ο†(n) nβˆ’Ο†(n) Notes
X81 1, 25, 45, X81 4 E30 6E 6X 6X X14 69 deficient, squarefree, semiprime, composite
X82 1, 2, 541, X82 4 1406 544 543 543 540 542 deficient, squarefree, semiprime, composite
X83 1, 3, 9, 17, 23, 49, 69, 123, 369, X83 X 1498 615 1X 27 690 3E3 deficient, composite
X84 1, 2, 4, 5, 7, X, E, 12, 18, 1X, 24, 2E, 38, 47, 5X, 65, 92, E8, 10X, 164, 218, 281, 542, X84 20 2400 1538 21 23 340 744 abundant, semiperfect, composite
X85 1, 1E, 57, X85 4 E40 77 76 76 X10 75 deficient, squarefree, semiprime, composite
X86 1, 2, 3, 6, 195, 36X, 543, X86 8 1960 X96 19X 19X 368 71X abundant, semiperfect, squarefree, sphenic, composite
X87 1, X87 2 X88 1 X87 X87 X86 1 deficient, squarefree, prime
X88 1, 2, 4, 8, 141, 282, 544, X88 8 1826 95X 143 147 540 548 deficient, composite
X89 1, 3, 5, 13, 87, 219, 36E, X89 8 1540 673 93 93 580 509 deficient, squarefree, sphenic, composite
X8X 1, 2, 545, X8X 4 1416 548 547 547 544 546 deficient, squarefree, semiprime, composite
X8E 1, 7, 11, 15, 77, 9E, 165, X8E 8 1200 331 31 31 800 28E deficient, squarefree, sphenic, composite
X90 1, 2, 3, 4, 6, 9, 10, 16, 30, 37, 72, X9, 124, 196, 283, 370, 546, X90 16 2398 1508 40 45 360 730 abundant, semiperfect, composite
X91 1, X91 2 X92 1 X91 X91 X90 1 deficient, squarefree, prime
X92 1, 2, 5, X, 21, 27, 42, 52, 10E, 21X, 547, X92 10 1880 9XX 32 37 420 672 deficient, composite
X93 1, 3, E, 29, 3E, E9, 371, X93 8 1400 529 51 51 648 447 deficient, squarefree, sphenic, composite
X94 1, 2, 4, 8, 14, 81, 142, 284, 548, X94 X 1912 X3X 83 89 540 554 deficient, composite
X95 1, X95 2 X96 1 X95 X95 X94 1 deficient, squarefree, prime
X96 1, 2, 3, 6, 7, 12, 19, 31, 36, 62, 93, 166, 197, 372, 549, X96 14 2140 1266 41 41 300 796 abundant, semiperfect, squarefree, composite
X97 1, 5, 21E, X97 4 1100 225 224 224 874 223 deficient, squarefree, semiprime, composite
X98 1, 2, 4, 285, 54X, X98 6 16E6 81X 287 289 548 550 deficient, composite
X99 1, 3, 9, 125, 373, X99 6 1386 4X9 128 12E 720 379 deficient, composite
X9X 1, 2, 17, 32, 35, 6X, 54E, X9X 8 1560 682 52 52 500 59X deficient, squarefree, sphenic, composite
X9E 1, X9E 2 XX0 1 X9E X9E X9X 1 deficient, squarefree, prime
XX0 1, 2, 3, 4, 5, 6, 8, X, 10, 11, 13, 18, 20, 22, 26, 33, 34, 44, 50, 55, 66, 88, X0, XX, 110, 143, 198, 220, 286, 374, 550, XX0 28 2E00 2020 1E 23 280 820 abundant, semiperfect, highly abundant, composite
n Divisors d(n) Οƒ(n) s(n) sopf(n) sopfr(n) Ο†(n) nβˆ’Ο†(n) Notes
XX1 1, 7, 167, XX1 4 1054 173 172 172 930 171 deficient, squarefree, semiprime, composite
XX2 1, 2, E, 1X, 5E, EX, 551, XX2 8 1600 71X 70 70 4X4 5EX deficient, squarefree, sphenic, composite
XX3 1, 3, 375, XX3 4 1260 379 378 378 728 377 deficient, squarefree, semiprime, composite
XX4 1, 2, 4, 15, 1E, 2X, 3X, 58, 78, 287, 552, XX4 10 1900 X18 36 38 4X8 5E8 deficient, composite
XX5 1, 5, 221, XX5 4 1110 227 226 226 880 225 deficient, squarefree, semiprime, composite
XX6 1, 2, 3, 6, 9, 16, 23, 25, 46, 4X, 73, 126, 199, 376, 553, XX6 14 2100 1216 2X 34 360 746 abundant, semiperfect, composite
XX7 1, XX7 2 XX8 1 XX7 XX7 XX6 1 deficient, squarefree, prime
XX8 1, 2, 4, 7, 8, 12, 14, 24, 28, 41, 48, 82, 94, 144, 168, 288, 554, XX8 16 20E3 1207 9 20 480 628 abundant, semiperfect, composite
XX9 1, 3, 377, XX9 4 1268 37E 37X 37X 730 379 deficient, squarefree, semiprime, composite
XXX 1, 2, 5, X, 111, 222, 555, XXX 8 1790 8X2 118 118 440 66X deficient, squarefree, sphenic, composite
XXE 1, XXE 2 XE0 1 XXE XXE XXX 1 deficient, squarefree, prime
XE0 1, 2, 3, 4, 6, 10, XE, 19X, 289, 378, 556, XE0 10 2180 1290 E4 E6 374 738 abundant, semiperfect, composite
XE1 1, E, 11, X1, EE, XE1 6 10E2 201 20 2E 920 191 deficient, composite
XE2 1, 2, 557, XE2 4 1450 55X 559 559 556 558 deficient, squarefree, semiprime, composite
XE3 1, 3, 5, 7, 9, 13, 19, 21, 2E, 39, 53, 63, 89, 127, 169, 223, 379, XE3 16 1X48 E55 13 1E 500 5E3 abundant, semiperfect, primitive abundant, composite
XE4 1, 2, 4, 8, 145, 28X, 558, XE4 8 1876 982 147 14E 554 560 deficient, composite
XE5 1, 17, 6E, XE5 4 E80 87 86 86 X30 85 deficient, squarefree, semiprime, composite
XE6 1, 2, 3, 6, 19E, 37X, 559, XE6 8 1X00 E06 1X4 1X4 378 73X abundant, semiperfect, squarefree, sphenic, composite
XE7 1, XE7 2 XE8 1 XE7 XE7 XE6 1 deficient, squarefree, prime
XE8 1, 2, 4, 5, X, 18, 67, 112, 224, 28E, 55X, XE8 10 1E40 1044 72 74 440 678 abundant, semiperfect, composite
XE9 1, 3, 15, 27, 43, 79, 37E, XE9 8 1400 503 43 43 680 439 deficient, squarefree, sphenic, composite
XEX 1, 2, 7, 12, 95, 16X, 55E, XEX 8 1700 802 X2 X2 480 63X deficient, squarefree, sphenic, composite
XEE 1, XEE 2 E00 1 XEE XEE XEX 1 deficient, squarefree, prime
E00 1, 2, 3, 4, 6, 8, 9, E, 10, 14, 16, 1X, 20, 29, 30, 38, 40, 56, 60, 74, 83, E0, 100, 128, 146, 1X0, 290, 380, 560, E00 26 2970 1X70 14 21 340 780 abundant, semiperfect, composite

E01 to 1000[]

n Divisors d(n) Οƒ(n) s(n) sopf(n) sopfr(n) Ο†(n) nβˆ’Ο†(n) Notes
E01 1, 5, 225, E01 4 1130 22E 22X 22X 894 229 deficient, squarefree, semiprime, composite
E02 1, 2, 11, 22, 51, X2, 561, E02 8 1610 70X 64 64 500 602 deficient, squarefree, sphenic, composite
E03 1, 3, 1E, 59, 381, E03 6 1344 441 22 41 704 3EE deficient, composite
E04 1, 2, 4, 291, 562, E04 6 1742 83X 293 295 560 564 deficient, composite
E05 1, 7, 16E, E05 4 1080 177 176 176 950 175 deficient, squarefree, semiprime, composite
E06 1, 2, 3, 5, 6, X, 13, 26, 45, 8X, 113, 1X1, 226, 382, 563, E06 14 2300 13E6 53 53 2X8 81X abundant, semiperfect, squarefree, composite
E07 1, 31, 37, E07 4 E74 69 68 68 X60 67 deficient, squarefree, semiprime, composite
E08 1, 2, 4, 8, 147, 292, 564, E08 8 18X0 994 149 151 560 568 deficient, composite
E09 1, 3, 9, 23, 4E, 129, 383, E09 8 1480 573 52 58 730 399 deficient, composite
E0X 1, 2, 565, E0X 4 1476 568 567 567 564 566 deficient, squarefree, semiprime, composite
E0E 1, 5, E, 25, 47, 101, 227, E0E 8 1300 3E1 39 39 794 337 deficient, squarefree, sphenic, composite
E10 1, 2, 3, 4, 6, 7, 10, 12, 17, 19, 24, 32, 36, 49, 64, 70, 96, E1, 170, 1X2, 293, 384, 566, E10 20 2714 1804 27 29 300 810 abundant, semiperfect, composite
E11 1, E11 2 E12 1 E11 E11 E10 1 deficient, squarefree, prime
E12 1, 2, 15, 2X, 3E, 7X, 567, E12 8 1600 6XX 56 56 514 5EX deficient, squarefree, sphenic, composite
E13 1, 3, 11, 33, 35, X3, 385, E13 8 1440 529 49 49 680 453 deficient, squarefree, sphenic, composite
E14 1, 2, 4, 5, 8, X, 14, 18, 21, 28, 34, 42, 54, 68, 84, 114, 148, 228, 294, 568, E14 19 2341 1429 7 1X 454 680 abundant, square, perfect power, semiperfect, composite
E15 1, E15 2 E16 1 E15 E15 E14 1 deficient, squarefree, prime
E16 1, 2, 3, 6, 9, 16, 75, 12X, 1X3, 386, 569, E16 10 2046 1130 7X 81 380 756 abundant, semiperfect, composite
E17 1, 7, 171, E17 4 1094 179 178 178 960 177 deficient, squarefree, semiprime, composite
E18 1, 2, 4, 295, 56X, E18 6 1766 84X 297 299 568 570 deficient, composite
E19 1, 3, 5, 13, 8E, 229, 387, E19 8 1600 6X3 97 97 5X8 531 deficient, squarefree, sphenic, composite
E1X 1, 2, E, 1X, 61, 102, 56E, E1X 8 1660 742 72 72 500 61X deficient, squarefree, sphenic, composite
E1E 1, E1E 2 E20 1 E1E E1E E1X 1 deficient, squarefree, prime
E20 1, 2, 3, 4, 6, 8, 10, 20, 57, E2, 149, 1X4, 296, 388, 570, E20 14 2440 1520 60 64 380 760 abundant, semiperfect, composite
n Divisors d(n) Οƒ(n) s(n) sopf(n) sopfr(n) Ο†(n) nβˆ’Ο†(n) Notes
E21 1, E21 2 E22 1 E21 E21 E20 1 deficient, squarefree, prime
E22 1, 2, 5, 7, X, 12, 1E, 2E, 3X, 5X, 97, 115, 172, 22X, 571, E22 14 2000 109X 31 31 380 762 abundant, semiperfect, squarefree, composite
E23 1, 3, 9, 12E, 389, E23 6 1430 509 132 135 750 393 deficient, composite
E24 1, 2, 4, 11, 22, 27, 44, 52, X4, 297, 572, E24 10 1994 X70 3X 40 500 624 deficient, composite
E25 1, E25 2 E26 1 E25 E25 E24 1 deficient, squarefree, prime
E26 1, 2, 3, 6, 1X5, 38X, 573, E26 8 1X60 E36 1XX 1XX 388 75X abundant, semiperfect, squarefree, sphenic, composite
E27 1, 5, 15, 17, 71, 7E, 22E, E27 8 1300 395 35 35 800 327 deficient, squarefree, sphenic, composite
E28 1, 2, 4, 8, 14, 85, 14X, 298, 574, E28 X 19E6 X8X 87 91 568 580 deficient, composite
E29 1, 3, 7, E, 19, 29, 41, 65, 103, 173, 38E, E29 10 1700 793 19 24 5X0 549 deficient, composite
E2X 1, 2, 575, E2X 4 14X6 578 577 577 574 576 deficient, squarefree, semiprime, composite
E2E 1, E2E 2 E30 1 E2E E2E E2X 1 deficient, squarefree, prime
E30 1, 2, 3, 4, 5, 6, 9, X, 10, 13, 16, 18, 23, 26, 30, 39, 46, 50, 69, 76, 90, E3, 116, 130, 1X6, 230, 299, 390, 576, E30 26 2E36 2006 X 19 300 830 abundant, semiperfect, highly abundant, composite
E31 1, E31 2 E32 1 E31 E31 E30 1 deficient, squarefree, prime
E32 1, 2, 577, E32 4 14E0 57X 579 579 576 578 deficient, squarefree, semiprime, composite
E33 1, 3, 391, E33 4 1308 395 394 394 760 393 deficient, squarefree, semiprime, composite
E34 1, 2, 4, 7, 8, 12, 24, 25, 48, 4X, 98, 14E, 174, 29X, 578, E34 14 2100 1188 32 36 480 674 abundant, semiperfect, composite
E35 1, 5, 11, 21, 55, X5, 231, E35 8 1320 3X7 16 24 840 2E5 deficient, composite
E36 1, 2, 3, 6, 1X7, 392, 579, E36 8 1X80 E46 1E0 1E0 390 766 abundant, semiperfect, squarefree, sphenic, composite
E37 1, E37 2 E38 1 E37 E37 E36 1 deficient, squarefree, prime
E38 1, 2, 4, E, 1X, 31, 38, 62, 104, 29E, 57X, E38 10 1X20 XX4 42 44 500 638 deficient, composite
E39 1, 3, 9, 131, 393, E39 6 1452 515 134 137 760 399 deficient, composite
E3X 1, 2, 5, X, 117, 232, 57E, E3X 8 1860 922 122 122 460 69X deficient, squarefree, sphenic, composite
E3E 1, 7, 175, E3E 4 1100 181 180 180 980 17E deficient, squarefree, semiprime, composite
E40 1, 2, 3, 4, 6, 8, 10, 14, 15, 20, 28, 2X, 40, 43, 58, 80, 86, E4, 150, 1X8, 2X0, 394, 580, E40 20 2760 1820 1X 26 368 794 abundant, semiperfect, composite
n Divisors d(n) Οƒ(n) s(n) sopf(n) sopfr(n) Ο†(n) nβˆ’Ο†(n) Notes
E41 1, 1E, 5E, E41 4 1000 7E 7X 7X X84 79 deficient, squarefree, semiprime, composite
E42 1, 2, 17, 32, 37, 72, 581, E42 8 1640 6EX 54 54 530 612 deficient, squarefree, sphenic, composite
E43 1, 3, 5, 13, 91, 233, 395, E43 8 1640 6E9 99 99 600 543 deficient, squarefree, sphenic, composite
E44 1, 2, 4, 2X1, 582, E44 6 17E2 86X 2X3 2X5 580 584 deficient, composite
E45 1, E45 2 E46 1 E45 E45 E44 1 deficient, squarefree, prime
E46 1, 2, 3, 6, 7, 9, 11, 12, 16, 19, 22, 33, 36, 53, 66, 77, 99, X6, 132, 176, 1X9, 396, 583, E46 20 2640 16E6 21 24 300 846 abundant, semiperfect, composite
E47 1, E, 105, E47 4 1060 115 114 114 X34 113 deficient, squarefree, semiprime, composite
E48 1, 2, 4, 5, 8, X, 18, 34, 35, 6X, 118, 151, 234, 2X2, 584, E48 14 2230 12X4 40 44 454 6E4 abundant, semiperfect, composite
E49 1, 3, 397, E49 4 1328 39E 39X 39X 770 399 deficient, squarefree, semiprime, composite
E4X 1, 2, 585, E4X 4 1516 588 587 587 584 586 deficient, squarefree, semiprime, composite
E4E 1, 27, 45, E4E 4 1000 71 70 70 XX0 6E deficient, squarefree, semiprime, composite
E50 1, 2, 3, 4, 6, 10, E5, 1XX, 2X3, 398, 586, E50 10 22X0 1350 EX 100 394 778 abundant, semiperfect, composite
E51 1, 5, 7, 2E, 3E, 177, 235, E51 8 1400 46E 4E 4E 780 391 deficient, squarefree, sphenic, composite
E52 1, 2, 587, E52 4 1520 58X 589 589 586 588 deficient, squarefree, semiprime, composite
E53 1, 3, 9, 23, 51, 133, 399, E53 8 1528 595 54 5X 760 3E3 deficient, composite
E54 1, 2, 4, 8, 14, 87, 152, 2X4, 588, E54 X 1X48 XE4 89 93 580 594 deficient, composite
E55 1, 15, 81, E55 4 1030 97 96 96 X80 95 deficient, squarefree, semiprime, composite
E56 1, 2, 3, 5, 6, X, E, 13, 1X, 21, 26, 29, 42, 47, 56, 63, 92, 106, 119, 1XE, 236, 39X, 589, E56 20 2700 1766 19 22 294 882 abundant, semiperfect, composite
E57 1, 11, X7, E57 4 1054 E9 E8 E8 X60 E7 deficient, squarefree, semiprime, composite
E58 1, 2, 4, 7, 12, 24, 4E, 9X, 178, 2X5, 58X, E58 10 1E40 EX4 58 5X 4X0 678 abundant, semiperfect, composite
E59 1, 3, 17, 25, 49, 73, 39E, E59 8 1480 523 43 43 700 459 deficient, squarefree, sphenic, composite
E5X 1, 2, 58E, E5X 4 1530 592 591 591 58X 590 deficient, squarefree, semiprime, composite
E5E 1, 5, 237, E5E 4 11X0 241 240 240 920 23E deficient, squarefree, semiprime, composite
E60 1, 2, 3, 4, 6, 8, 9, 10, 16, 1E, 20, 30, 3X, 59, 60, 78, E6, 134, 153, 1E0, 2X6, 3X0, 590, E60 20 2860 1900 24 2E 380 7X0 abundant, semiperfect, composite
n Divisors d(n) Οƒ(n) s(n) sopf(n) sopfr(n) Ο†(n) nβˆ’Ο†(n) Notes
E61 1, E61 2 E62 1 E61 E61 E60 1 deficient, squarefree, prime
E62 1, 2, 591, E62 4 1536 594 593 593 590 592 deficient, squarefree, semiprime, composite
E63 1, 3, 7, 19, 67, 179, 3X1, E63 8 1594 631 75 75 660 503 deficient, squarefree, sphenic, composite
E64 1, 2, 4, 5, X, 18, 6E, 11X, 238, 2X7, 592, E64 10 2060 10E8 76 78 468 6E8 abundant, semiperfect, composite
E65 1, E, 107, E65 4 1080 117 116 116 X50 115 deficient, squarefree, semiprime, composite
E66 1, 2, 3, 6, 1E1, 3X2, 593, E66 8 1E20 E76 1E6 1E6 3X0 786 abundant, semiperfect, squarefree, sphenic, composite
E67 1, E67 2 E68 1 E67 E67 E66 1 deficient, squarefree, prime
E68 1, 2, 4, 8, 11, 14, 22, 28, 44, 54, 88, X8, 154, 2X8, 594, E68 14 2096 112X 13 23 540 628 abundant, semiperfect, composite
E69 1, 3, 5, 9, 13, 31, 39, 93, 135, 239, 3X3, E69 10 1870 903 39 40 600 569 deficient, composite
E6X 1, 2, 7, 12, 15, 2X, 41, 82, 9E, 17X, 595, E6X 10 1946 998 22 29 480 6XX deficient, composite
E6E 1, E6E 2 E70 1 E6E E6E E6X 1 deficient, squarefree, prime
E70 1, 2, 3, 4, 6, 10, E7, 1E2, 2X9, 3X4, 596, E70 10 2328 1378 100 102 3X0 790 abundant, semiperfect, composite
E71 1, E71 2 E72 1 E71 E71 E70 1 deficient, squarefree, prime
E72 1, 2, 5, X, 11E, 23X, 597, E72 8 1900 94X 126 126 474 6EX deficient, squarefree, sphenic, composite
E73 1, 3, 3X5, E73 4 1360 3X9 3X8 3X8 788 3X7 deficient, squarefree, semiprime, composite
E74 1, 2, 4, 8, E, 17, 1X, 32, 38, 64, 74, 108, 155, 2XX, 598, E74 14 2100 1148 28 30 500 674 abundant, semiperfect, composite
E75 1, 7, 17E, E75 4 1140 187 186 186 9E0 185 deficient, squarefree, semiprime, composite
E76 1, 2, 3, 6, 9, 16, 23, 27, 46, 52, 79, 136, 1E3, 3X6, 599, E76 14 2280 1306 30 36 390 7X6 abundant, semiperfect, composite
E77 1, 5, 21, 57, 23E, E77 6 1278 301 60 65 920 257 deficient, composite
E78 1, 2, 4, 2XE, 59X, E78 6 1850 894 2E1 2E3 598 5X0 deficient, composite
E79 1, 3, 11, 33, 37, X9, 3X7, E79 8 1514 557 4E 4E 700 479 deficient, squarefree, sphenic, composite
E7X 1, 2, 59E, E7X 4 1560 5X2 5X1 5X1 59X 5X0 deficient, squarefree, semiprime, composite
E7E 1, 1E, 61, E7E 4 1040 81 80 80 E00 7E deficient, squarefree, semiprime, composite
E80 1, 2, 3, 4, 5, 6, 7, 8, X, 10, 12, 13, 14, 18, 19, 20, 24, 26, 2E, 34, 36, 40, 48, 50, 5X, 68, 70, 89, 94, X0, E8, 120, 156, 180, 1E4, 240, 2E0, 3X8, 5X0, E80 34 3540 2580 15 1E 280 900 abundant, semiperfect, highly composite, highly abundant, composite
n Divisors d(n) Οƒ(n) s(n) sopf(n) sopfr(n) Ο†(n) nβˆ’Ο†(n) Notes
E81 1, 35, E81 3 EE7 36 35 6X E48 35 deficient, square, perfect power, semiprime, composite
E82 1, 2, 25, 4X, 5X1, E82 6 1619 657 27 50 578 606 deficient, composite
E83 1, 3, 9, E, 15, 29, 43, 83, 109, 137, 3X9, E83 10 1760 799 27 2X 680 503 deficient, composite
E84 1, 2, 4, 2E1, 5X2, E84 6 1862 89X 2E3 2E5 5X0 5X4 deficient, composite
E85 1, 5, 241, E85 4 1210 247 246 246 940 245 deficient, squarefree, semiprime, composite
E86 1, 2, 3, 6, 1E5, 3XX, 5X3, E86 8 1E60 E96 1EX 1EX 3X8 79X abundant, semiperfect, squarefree, sphenic, composite
E87 1, 7, 181, E87 4 1154 189 188 188 X00 187 deficient, squarefree, semiprime, composite
E88 1, 2, 4, 8, 157, 2E2, 5X4, E88 8 1X10 X44 159 161 5X0 5X8 deficient, composite
E89 1, 3, 3XE, E89 4 1380 3E3 3E2 3E2 798 3E1 deficient, squarefree, semiprime, composite
E8X 1, 2, 5, X, 11, 22, 55, XX, 121, 242, 5X5, E8X 10 1XX6 E18 18 29 440 74X deficient, composite
E8E 1, 17, 75, E8E 4 1060 91 90 90 E00 8E deficient, squarefree, semiprime, composite
E90 1, 2, 3, 4, 6, 9, 10, 16, 30, 3E, 7X, E9, 138, 1E6, 2E3, 3E0, 5X6, E90 16 2640 1670 44 49 3X0 7E0 abundant, semiperfect, composite
E91 1, E91 2 E92 1 E91 E91 E90 1 deficient, squarefree, prime
E92 1, 2, 7, E, 12, 1X, 65, X1, 10X, 182, 5X7, E92 10 1X20 X4X 18 27 470 722 deficient, composite
E93 1, 3, 5, 13, 95, 243, 3E1, E93 8 1700 729 X1 X1 628 567 deficient, squarefree, sphenic, composite
E94 1, 2, 4, 8, 14, 28, 45, 8X, 158, 2E4, 5X8, E94 10 1E76 EX2 47 53 594 600 abundant, semiperfect, primitive abundant, composite
E95 1, E95 2 E96 1 E95 E95 E94 1 deficient, squarefree, prime
E96 1, 2, 3, 6, 1E7, 3E2, 5X9, E96 8 1E80 EX6 200 200 3E0 7X6 abundant, semiperfect, squarefree, sphenic, composite
E97 1, E97 2 E98 1 E97 E97 E96 1 deficient, squarefree, prime
E98 1, 2, 4, 5, X, 15, 18, 21, 2X, 42, 58, 71, 84, 122, 244, 2E5, 5XX, E98 16 2316 133X 20 27 454 744 abundant, semiperfect, composite
E99 1, 3, 7, 9, 19, 23, 53, 69, 139, 183, 3E3, E99 10 1828 84E X 1X 690 509 deficient, composite
E9X 1, 2, 1E, 31, 3X, 62, 5XE, E9X 8 1700 722 52 52 560 63X deficient, squarefree, sphenic, composite
E9E 1, 11, XE, E9E 4 10X0 101 100 100 XX0 EE deficient, squarefree, semiprime, composite
EX0 1, 2, 3, 4, 6, 8, 10, 20, 5E, EX, 159, 1E8, 2E6, 3E4, 5E0, EX0 14 2600 1620 64 68 3X8 7E4 abundant, semiperfect, composite
n Divisors d(n) Οƒ(n) s(n) sopf(n) sopfr(n) Ο†(n) nβˆ’Ο†(n) Notes
EX1 1, 5, E, 27, 47, 10E, 245, EX1 8 1400 41E 3E 3E 840 361 deficient, squarefree, sphenic, composite
EX2 1, 2, 5E1, EX2 4 1596 5E4 5E3 5E3 5E0 5E2 deficient, squarefree, semiprime, composite
EX3 1, 3, 3E5, EX3 4 13X0 3E9 3E8 3E8 7X8 3E7 deficient, squarefree, semiprime, composite
EX4 1, 2, 4, 7, 12, 24, 51, X2, 184, 2E7, 5E2, EX4 10 2014 1030 5X 60 500 6X4 abundant, semiperfect, composite
EX5 1, EX5 2 EX6 1 EX5 EX5 EX4 1 deficient, squarefree, prime
EX6 1, 2, 3, 5, 6, 9, X, 13, 16, 17, 26, 32, 39, 49, 76, 7E, 96, 123, 13X, 1E9, 246, 3E6, 5E3, EX6 20 2860 1876 25 28 300 8X6 abundant, semiperfect, composite
EX7 1, 25, 4E, EX7 4 1060 75 74 74 E34 73 deficient, squarefree, semiprime, composite
EX8 1, 2, 4, 8, 14, 8E, 15X, 2E8, 5E4, EX8 X 1E30 E44 91 97 5X8 600 deficient, composite
EX9 1, 3, 3E7, EX9 4 13X8 3EE 3EX 3EX 7E0 3E9 deficient, squarefree, semiprime, composite
EXX 1, 2, 5E5, EXX 4 15X6 5E8 5E7 5E7 5E4 5E6 deficient, squarefree, semiprime, composite
EXE 1, 5, 7, 2E, 41, 185, 247, EXE 8 1480 491 10 22 820 38E deficient, composite
EE0 1, 2, 3, 4, 6, E, 10, 11, 1X, 22, 29, 33, 38, 44, 56, 66, E0, EE, 110, 1EX, 2E9, 3E8, 5E6, EE0 20 2880 1890 25 27 340 870 abundant, semiperfect, composite
EE1 1, 15, 85, EE1 4 1090 9E 9X 9X E14 99 deficient, squarefree, semiprime, composite
EE2 1, 2, 5E7, EE2 4 15E0 5EX 5E9 5E9 5E6 5E8 deficient, squarefree, semiprime, composite
EE3 1, 3, 9, 13E, 3E9, EE3 6 1540 549 142 145 7E0 403 deficient, composite
EE4 1, 2, 4, 5, 8, X, 18, 34, 37, 72, 124, 15E, 248, 2EX, 5E8, EE4 14 2360 1368 42 46 480 734 abundant, semiperfect, composite
EE5 1, EE5 2 EE6 1 EE5 EE5 EE4 1 deficient, squarefree, prime
EE6 1, 2, 3, 6, 7, 12, 19, 35, 36, 6X, X3, 186, 1EE, 3EX, 5E9, EE6 14 2400 1406 45 45 340 876 abundant, semiperfect, squarefree, composite
EE7 1, EE7 2 EE8 1 EE7 EE7 EE6 1 deficient, squarefree, prime
EE8 1, 2, 4, 2EE, 5EX, EE8 6 1900 904 301 303 5E8 600 deficient, composite
EE9 1, 3, 5, 13, 1E, 21, 59, 63, 97, 249, 3EE, EE9 10 1880 883 27 30 614 5X5 deficient, composite
EEX 1, 2, 5EE, EEX 4 1600 602 601 601 5EX 600 deficient, squarefree, semiprime, composite
EEE 1, E, 111, EEE 4 1120 121 120 120 XX0 11E deficient, squarefree, semiprime, composite
1000 1, 2, 3, 4, 6, 8, 9, 10, 14, 16, 20, 23, 28, 30, 40, 46, 54, 60, 80, 90, 100, 140, 160, 200, 300, 400, 600, 1000 24 2E34 1E34 5 19 400 800 abundant, perfect power, semiperfect, composite
Advertisement