The dozenal digits are: 0 1 2 3 4 5 6 7 8 9 𝛘 Ɛ.

The dozenal numbers are made with combining those digits.

## Transdecimal digits

Dek and El are the transdecimal digits.

They were orringinally when the Dozenalism started, they were debicted as: 𝛘 Ɛ

They are sometimes currently depicted like this: ↊ ↋

## Numbers 10-ƐƐ

The number 10 is called "one doh".

${\displaystyle 10 - \text{one doh}}$

${\displaystyle 11 - \text{one doh one}}$

${\displaystyle 12 - \text{one doh two}}$

${\displaystyle 13 - \text{one doh three}}$

${\displaystyle 14 - \text{one doh four}}$

${\displaystyle 15 - \text{one doh five}}$

${\displaystyle 16 - \text{one doh six}}$

${\displaystyle 17 - \text{one doh seven}}$

${\displaystyle 18 - \text{one doh eight}}$

${\displaystyle 19 - \text{one doh nine}}$

${\displaystyle 1\mathcal{X} - \text{one doh dek}}$

${\displaystyle 1\mathcal{E} - \text{one doh el}}$

20 is "two doh"

21 is "two doh one"

22 is "two doh two" and so on.

Let's count by one doh up to 90.

${\displaystyle 10}$ one doh

${\displaystyle 20}$ two doh

${\displaystyle 30}$ three doh

${\displaystyle 40}$ four doh

${\displaystyle 50}$ five doh

${\displaystyle 60}$ six doh

${\displaystyle 70}$ seven doh

${\displaystyle 80}$ eight doh

${\displaystyle 90}$ nine doh

Let's count past 90 up to EE

90-9E will be easy:

${\displaystyle 90}$ nine doh

${\displaystyle 91}$ nine doh one

${\displaystyle 92}$ nine doh two

${\displaystyle 93}$ nine doh three

${\displaystyle 94}$ nine doh four

${\displaystyle 95}$ nine doh five

${\displaystyle 96}$ nine doh six

${\displaystyle 97}$ nine doh seven

${\displaystyle 98}$ nine doh eight

${\displaystyle 99}$ nine doh nine

${\displaystyle 9\mathcal{X}}$ nine doh dek

${\displaystyle 9\mathcal{E}}$ nine doh el

What is one more than 9Ɛ?

${\displaystyle 9\mathcal{E} + 1 = \mathcal{X}0}$ ${\displaystyle \mathcal{X}0}$ is dek doh and you will probably guess

${\displaystyle \mathcal{X}1}$ is dek doh one,

${\displaystyle \mathcal{X}2}$ is dek doh two and so on.

${\displaystyle \mathcal{XE} + 1 = \mathcal{E}0 }$ ${\displaystyle \mathcal{E}0}$ - el doh

${\displaystyle \mathcal{E}1}$ - el doh one

${\displaystyle \mathcal{E}2}$ - el doh two

${\displaystyle \mathcal{E}3}$ - el doh three

${\displaystyle \mathcal{E}4}$ - el doh four

${\displaystyle \mathcal{E5}}$ - el doh five

${\displaystyle \mathcal{E}6}$ - el doh six

${\displaystyle \mathcal{E}7}$ - el doh seven

${\displaystyle \mathcal{E}8}$ - el doh eight

${\displaystyle \mathcal{E}9}$ - el doh nine

${\displaystyle \mathcal{EX}}$ - el doh dek

${\displaystyle \mathcal{EE}}$ - el doh el

## Counting past ƐƐ

100 is one gro.

To represent dozens use the term "doh", and to represent grosses use the term "gro".

Examples:

${\displaystyle 16\mathcal{E}}$ is one gro six doh el

${\displaystyle 23\mathcal{X}}$ is two gro three doh dek

${\displaystyle 32\mathcal{E}}$ is three gro two doh el

${\displaystyle 408}$ is four gro eight

${\displaystyle 591}$ is five gro nine doh one

${\displaystyle 6\mathcal{EX}}$ is six gro el doh dek

${\displaystyle 700}$ is seven gro

${\displaystyle 830}$ is eight gro three doh

${\displaystyle 9\mathcal{X}5}$ is nine gro dek doh five

${\displaystyle \mathcal{XX}1}$ is dek gro dek doh one

${\displaystyle \mathcal{EXE}}$ is el gro dek doh el

${\displaystyle \mathcal{EEE}}$ is el gro el doh el